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Abstract. A hybrid system is a dynamical system reacting to continu-
ous and discrete changes simultaneously. Many researchers have proposed
modeling and verification formalisms for hybrid systems, but algorith-
mic verification of important properties such as safety and reachability
is still an on-going research area. This paper demonstrates that a basic
modeling formalism for hybrid systems, DEV&DESS is an easy-to-use
input front-end of a formal verification tool, HyTech. HyTech is a sym-
bolic model checker for liner hybrid automata, and we transformed an
atomic DEV&DESS model into linear hybrid automata. We are now de-
veloping translation rules from DEV&DESS models, including a coupled
DEV&DESS, into linear hybrid automata, through various case studies.

1 Introduction

A hybrid system is a dynamical system whose behavior is a combination of con-
tinuous and discrete dynamics [5]. The discrete parts naturally model modes of
operation of the system, while the continuous dynamics model physical inter-
actions with themselves or environment, such as automotive controllers, avionic
systems, defense modeling and simulation, medical equipments and controllers.

Researches on modeling, analysis and verification of hybrid systems can be
classified into two classes, one starting from finite state machine (FSM) and the
other originating from continuous system controls. Timed automata [3], (linear)
hybrid automata [1,4], DEV&DESS [22] and CHARON [2] are modeling methods
for hybrid systems, which belong to the first class. They have also been applied
to various domains [11,7,20,13,14] relevantly. UPPAAL [21], HyTech [12] and
KRONOS [10] are algorithmic verification tools developed for model checking.
UPPAAL uses timed automata which is a finite automaton augmented with a
finite number of clocks, which are real-valued variables changing continuously
with a constant rate 1(one). HyTech can handle more general kinds of hybrid
systems since it uses linear hybrid automata. The second class has developed
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out of researches in continuous dynamics and system control. Many researches1

have been proposed to specify and verify hybrid systems from the viewpoint of
control automation. Efficient application of these techniques, however, is rather
limited to specific scopes, because of their inherent complexity. In particular,
Checkmate [8], d/dt [6] and level set method [16] allow verification on more
general dynamics than HyTech, but still have the hard problem of scalability.

DEV&DESS have been typically used as a fundamental formalism of other
extended ones (e.g. CHARON and ECML [15]), since it deals with only basic
behavior of hybrid systems without visual syntax. Therefore, verification of the
hybrid system modeled in the DEV&DESS formalism using HyTech is a good
starting-point of developing modeling and verification tools for hybrid systems,
which a research institute in Korea, ETRI (Electronics and Telecommunications
Research Institute) does. We first transformed the model of DEV&DESS formal-
ism into a form of linear hybrid automata. While transforming the DEV&DESS
formalism into linear hybrid automata, we found and resolved many semantic
gaps between the two formalisms. We, however, still have several obstacles to
overcome, and we are currently focusing on resolving them.

The outline of the paper is as follows. We briefly review the basics of the
DEV&DESS formalism and the HyTech symbolic model checker in Section 2.
It includes a brief introduction to linear hybrid automata. Section 3 explains
hybrid systems modeled with DEV&DESS, and transformation into linear hybrid
automata and formal verification using HyTech are explained in Section 4. In
Section 5, we summarize out considerations on the translation from DEV&DESS
into linear hybrid automata and the problems to be solved. Section 6 concludes
the paper.

2 Background

2.1 DEV&DESS Formalism

The discrete event and differential equation specified system (DEV&DESS) [18,17]
formalism is a system theoretic formalism [22] for modular, hierarchical, com-
bined discrete/continuous system modeling. The DEV&DESS formalism is de-
fined as follows[22,18]:

DEV&DESS = 〈 Xdiscr , Xcont, Y discr, Y cont, S, δint, Cint, δint, λdiscr, ta, f , λcont 〉

where,

– Xdiscr and Y discr are the set of discrete input and output from DEVS
– Xcont and Y cont are the structured set of continuous value inputs and outputs
– S = Sdiscr × Scont is the cartesian product of continuous and discrete states
– δext : Q × Xcont × Xdisc → S is the external state transition function, where

Q = {(sdiscr, scont, e)|sdiscr ∈ Sdiscr, scont ∈ Scont, e ∈ R+
0 } is the set of total

states with the elapsed time e

1 See the website http://wiki.grasp.upenn.edu/hst/index.php?n=Main.HomePage

managed by U. Penn.
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– δint : Q × Xcont → S is the internal state transition function
– Cint : Q × Xcont → Bool is the state event condition function
– λdiscr : Q × Xcont → Y discr is the discrete event output function
– λcont : Q × Xcont → Y cont is the continuous output function
– f : Q × Xcont → Scout is the rate of change function
– ta : Sdiscr → R+

0 ∪∞ is the time advance function

The semantics of the DEV&DESS are informally described as follows:

1. Intervals 〈t1, t2〉 with no events: Only Scont and e change. λcont is oper-
ating throughout the interval.

2. A state event occurs first at time t in interval 〈t1, t2〉: δint is executed
to define a new state. e is set to 0, and λdiscr is called to generate an output
event at time t. λcont is calculated from time t1 to t.

3. A discrete event at the external input port occurs first at time t
in interval 〈t1, t2〉: δext is executed to define a new state at time t. e is set
to 0, and λcont is calculated from time t1 to t.

Fundamental of DEV&DESS is to understand how the discrete part is affected
by the continuous part (See [22] for detials). Events occur whenever a condi-
tion specified on the continuous elements becomes true. In the interval between
events, the continuous input, state and output values change continuously.

2.2 HyTech and Linear Hybrid Automata

HyTech [12] is a symbolic model checker for linear hybrid automata [4]. As
other model checkers [9], it checks a formal model of a system automatically for
correctness with respect to requirements. It also provides parametric analysis. If
a system model has parameters whose values are not decided yet, then HyTech
can compute necessary and sufficient conditions on the parameter’s value.

Hybrid automata[1] has been a background formalism of various modeling and
verification tools for hybrid systems. However, since the hybrid automata model
is too expressive to be proved automatically by model checkers with reasonable
computational cost, HyTech uses a restricted class of hybrid automata, which
called linear hybrid automata. A hybrid automaton is a linear hybrid automaton
if it satisfies following two requirements:

1. Linearity: For every control mode v ∈ V , flow(v), inv(v) and init(v) are
finite conjunctions of linear inequalities.

2. Flow independence: For every control mode v ∈ V , flow(v) is a predicate
over the variables in Ẋ only and does not contain any variables from X .

With linear hybrid automata, the HyTech symbolic model checker verifies safety
properties and analyzes correct conditions for parameters. Many embedded sys-
tems which belong to hybrid systems, on the other hand, may be not the linear
hybrid automata. They are not apt to meet the constraints above. In such cases,
we carefully have to approximate or abstract the system model into linear hy-
brid automata. However, from a practical point of view, we still face a number
of important hybrid systems which are classified into linear hybrid automata.



DEV&DESS Verification 115

3 Hybrid System Modeling

To demonstrate our approach, we modeled an atomic DEV&DESS model for a
simple barrel filler system originated in [22]. Since there is no visual representa-
tion in the DEV&DESS formalism, we used graphical notations proposed by [19]
for better understanding. In graphical notations, states mean the phases which
are mutually exclusive state space[22], while solid and dotted transitions symbol-
ize external and internal events, respectively. 〈Fig.1〉 denotes the DEV&DESS
model for a barrel filler system. The formal definition of DEV&DESS model is
skipped for the limit of space.

closed
d contents/dt = 0

open
d contents/dt = inflow

contents := 0
switch := off, := 

on_off=off
/switch:=off

:= 1

on_off=on
/switch:=on

:= 

ta(closed)
/barrel=full-filled-barrel
/contents :=0

:= 

[contents=9]
/
/ := 1

closing
d contents/dt = inflow

ta(closing)
[switch=on]
/
/ := 0

ta(closing)
[switch=off]
/
/ := 

input[condition]
/code External event
ta[condition]
/output/code

Internal event

(Code may changes state of model arbitrary)

Fig. 1. An atomic DEV&DESS model for the Barrel Filler

The system fills a barrel with a certain rate of inflow while the valve of pipe
is opened. When the barrel is filled up, it stops filling, then puts the full-filled
barrel out. This process involves changing the barrel with a new empty one. The
valve of the system can be changed by signal from the input port ‘on off ’, the
external event, or by the state event occurred when ‘contents ’ becomes a cutoff
value while the valve is opened; the cutoff value is set as 9 for prevention of
overflow because of the assumption that the capacity of a barrel is 10 liter. The
continuous variable ‘contents ’ represents the level of water, increasing its value
continuously with derivative. Its derivative is the same as the continuous input
‘inflow ’ while the valve is not closed. We also assumed the inflow of water is
decreased as half, from 0.5 to 0.25, when the valve is closing since the valve is
not fully opened. The variable ‘switch’, which contains the last signal value of
input ‘on off ’, is used for differentiation the two events that change the state
of the valve, since ‘contents ’ is the only available information. The ‘σ’ which is
renewed at every phase changes, represents result of time advanced function.
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Fig. 2. The trajectories for the Barrel Filler

In order to guarantee the correct behavior of the barrel filler model, we made
a simple scenario for the barrel filler system as 〈Fig.2〉. In the whole scenario,
the model starts filling a barrel twice by the ‘on’ signal, and stops once by the
‘off’ signal. Even though the value of ‘contents ’ stops increasing occasionally
by the ‘on off ’ signal, as time goes on, the state event is occurred whenever
the ‘contents ’ reaches at 9. The state event causes the model puts a ‘full-filled-
barrel’ out when the valve is closed, and the series of processes above are repeated
immediately after a barrel is produced.

For translation the barrel filler model into linear hybrid automata, it is needed
to confirm whether the model satisfies the conditions of linear hybrid automata
or not, since it is one of the necessary condition for translation. First, the rate
of change function ‘f ’ is influenced only by the input ‘inflow ’. Although ‘inflow ’
has different value according to the state of the valve, it has constant value while
system stays in the same state. Therefore continuous state variable ‘contents ’
always increases linearly under same phase, meaning that the model has ‘flow
independence condition’ of linear hybrid automata. Second, it is able to find out
all possible phases and its changes, since all events and states of the model are
decidable. Thus every condition of concerned variables in phases can be expressed
by conjunction of linear inequalities, and we can assure that the model above
satisfies the ‘linearity’ of linear hybrid automata.
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4 Verification Using HyTech

This section demonstrates that properties of barrel filler model can be verified
with HyTech through translation into linear hybrid automata model. We intro-
duce the translated linear hybrid automata first.

Fig. 3. Automata for discrete input ‘on off ’

The main issue faced during translation was that hybrid automata[1] doesn’t
have any notations to express I/O behavior, different from the DEV&DESS
formalism. Thus we used an additional automaton, as described in 〈Fig.3〉, which
shows the same behavior with the input ‘on off ’. The variable ‘t ’ is a clock
for global time, and the automaton coordinates with the barrel filler automata
through synchronization labels ‘on’, ‘off’.

The barrel filler model with explained scenario can be translated into a linear
hybrid automaton as depicted in 〈Fig.4〉. The variable ‘e’ represents the elapsed
time in DEV&DESS and it is compared at every control mode with the variable
‘σ’ for checking occurrence of time event. 〈Fig.5〉 shows an excerption of the
state trace from 0 to 22.5 time unit by the HyTech execution. The value ‘−1000’

closed open closing

error

,

, , 10 liter barrel

Fig. 4. A linear hybrid automata model for the barrel filler model
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Time: 0.000
Location: closed.on_off_init
sigma=1000 & switch=0 & barrel=0 
& contents=0 & e=0 & t=0
---------------
VIA 1.000 time units 

---------------
Time: 1.000
Location: closed.on_off_init
sigma=1000 & switch=0 & barrel=0 

& contents=0 & e=1 & t=1
-------------------------------

VIA: on
-------------------------------
Time: 1.000
Location: open.on_off_1st
sigma=1000 & switch=1 & barrel=0 

& contents=0 & e=0 & t=1
---------------
VIA 1.000 time units 

---------------
Time: 2.000
Location: open.on_off_1st
sigma=1000 & switch=1 & barrel=0 

& 2contents=1 & e=1 & t=2
-------------------------------

VIA: off
-------------------------------
Time: 2.000
Location: closing.on_off_2nd
sigma=1 & switch=0 & barrel=0 & 

2contents=1 & e=0 & t=2

---------------
VIA 1.000 time units 

---------------
Time: 3.000
Location: closing.on_off_2nd
sigma=1 & switch=0 & barrel=0 & 
4contents=3 & e=1 & t=3
-------------------------------

VIA:
-------------------------------
Time: 3.000
Location: closed.on_off_2nd
sigma=1000 & switch=0 & barrel=0 

& 4contents=3 & e=0 & t=3
---------------
VIA 2.000 time units 

---------------
Time: 5.000
Location: closed.on_off_2nd
sigma=1000 & switch=0 & barrel=0 

& 4contents=3 & e=2 & t=5
-------------------------------

VIA: on
-------------------------------
Time: 5.000
Location: open.on_off_fin
sigma=1000 & switch=1 & barrel=0 

& 4contents=3 & e=0 & t=5
---------------
VIA 16.500 time units 

---------------
Time: 21.500

Location: open.on_off_fin
sigma=1000 & switch=1 & barrel=0 

& contents=9 & 2e=33
& 2t= 43

-------------------------------
VIA:

-------------------------------
Time: 21.500
Location: closing.on_off_fin
sigma=1 & switch=1 & barrel=0 & 

contents=9 & e=0 & 2t=43
---------------
VIA 1.000 time units 

---------------
Time: 22.500
Location: closing.on_off_fin
sigma=1 & switch=1 & barrel=0 & 

4contents=37 & e=1 & 2t=45
-------------------------------

VIA:
-------------------------------
Time: 22.500
Location: closed.on_off_fin
sigma=0 & switch=1 & barrel=10 & 

4contents=37 & e=0 & 2t=45
-------------------------------

VIA:
-------------------------------
Time: 22.500
Location: open.on_off_fin
sigma=1000 & switch=1 & barrel=0 

& contents=0 & e=0 & 2t=45

Fig. 5. Reachable states for the barrel filler model

is used for representing infinity since HyTech doesn’t support such expression.
Analysis on the result confirmed that the translated linear hybrid automaton
shows the same behavior with the DEV&DESS model illustrated in 〈Fig.2〉.

The HyTech symbolic model checker performs a couple of valuable analysis on
the linear hybrid automata models, i.e., model checking of safety properties and
parametric analysis. The barrel filler system model has a safety requirement such
as ‘Content of barrel should not over 10 liter ’. For safety verification, we added
the monitor automata, the unsafe state ‘error ’ in 〈Fig.4〉, which reports when
the ‘unsafe’ state is entered. The model can be confirmed the satisfaction of the
safety requirements by finding the path to the unsafe state. HyTech can perform
such analysis by computing all reachable states and checking whether the unsafe
state can be reached or not. By execution of HyTech, we were successfully able
to get the result that the model satisfies the safety requirement.

We defined the statement for parametric analysis as ‘When the valve should
start closing to avoid overflowing water of barrel? ’. It will find out constraints for
the cutoff value which will result in water overflowing. First, HyTech searches the
reachable states. Then the predicates for the necessary and sufficient conditions
for visiting unsafe state are calculated by existential quantification using the
reachable states and the unsafe state. The result denotes that the barrel always
overflows, that is, unsafe value for parameter cutoff. As executed with such series
of processes, the predicate ‘4cutoff > 39’ for the unsafe cutoff value was output,
and from the negation of this result, the safe cutoff value can be derived, ‘4cutoff
<= 39’. It also implies if the cutoff value is 9.75, then the model puts a ten liter
filled barrel exactly.
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5 Further Considerations on the Translation from
DEV&DESS into Linear Hybrid Automata

Components structuring DEV&DESS and linear hybrid automata are different
from each other, and we need to map one to the other appropriately while keeping
their behavioral equivalence. First of all, we used the concept of ‘phase[22]’ in
the DEV&DESS formalism to compose control modes which are the fundamental
elements of linear hybrid automata. The biggest challenge for the translation is
how to express I/O behavior of the DEV&DESS formalism in linear hybrid
automata. Our solution in the paper is to use parallel automata which shows
the same behavior with the original input trajectories of the DEV&DESS model.
The basic ideas for translation are as follows:

– The variable ‘e’ is added to symbolize the elpased time in DEV&DESS. Its
value is refreshed at every every control mode changes.

– The variable ‘σ’ is used for time advanced function ‘ta’.
– A labeling function ‘init ’ is derived from initial condition.
– A labeling function ‘flow ’ is derived from change of rate function ‘f ’ with

continuous input value.
– A labeling function ‘jump’ is derived from state and external events. The

conditions for time event is also included at every control mode.
– A labeling function ‘inv ’ is derived from state events and time events.

Based on the guidelines above, we could translate the DEV&DESS model into
an equivalent linear hybrid automata model successfully. We could also perform
formal verification of HyTech on the translated models too. We, however, found
some problems which should be resolved for more seamless translations.

– In the case that the external and internal events conflict in DEV&DESS
model, assignment the order of priority between jump conditions is difficult,
since hybrid automata does not provide any such semantics. Therefore, It
may happen that exploring unintended trajectories of transformed automata.

– If the continuous input trajectories are the form of stairs, figuring out the
whole input trajectories is required before translation even if it satisfies ‘flow
independece condition’. It is due to that the phase may map to the several
control modes, not one by one, since HyTech doesn’t allow using variables
to express rate condition.

6 Conclusion

This paper translated an atomic DEV&DESS model for a barrel filler system
into linear hybrid automata, and then performed model checking of safety re-
quirement and parametric analysis using the HyTech symbolic model checker.
Translation from the DEV&DESS formalism into linear hybrid automata has
its won significance, since verification tools dealing with DEV&DESS have not
been proposed while DEV&DESS has been used as a basic formalism for various
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modeling tools, such as CHARON and ECML. Therefore, if the translation is
well defined and a mechanical translator is also supported, then verifying the
model can be done by using existing tools such as HyTech. We are now develop-
ing translations for coupled DEV&DESS formalism to linear hybrid automata
and transition rules for the broad applications.
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