# NuSCR Manual (ver. 1.0)

Dependable Software lab.

KAIST Software Engineering Lab.

Deptpartment of Computer Science



#### **Contents**

- What is NuSCR?
- Background of NuSCR
- Components of NuSCR
- Variable naming rules
- FOD (Function Overview Diagram)
- Function Variable
- History Variable
- Timed History Variable



#### What is NuSCR?

- Nuclear + SCR(Software Cost Reduction)
- Fixed form language for describing requirements
- Suitable for software technology that receives input, performs control logic and gives output
- Suitable for nuclear energy field required technology



## **Background of NuSCR**

- Expansion of the ACEL(Wolsong) method
- ◆ ACEL(Wolsong)
  - Basic structure : FOD (Function Overview Diagram)
    - > Function : SDT (Structured Decision Table) function table
    - ➤ History : State node + function
    - > Timing: Timing function

#### ◆ NuSCR

- Basic structure : FOD
  - ➤ Function : 개선된 SDT function table
  - ➤ History : Automata
  - ➤ Timing: Time Annotated Automata



## Components of NuSCR

- Input variable
- Output variable
- Function variable
- History variable
- Timed history variable
- FOD (Function Overview Diagram)



## Variable naming rules

- Add the corresponding prefix to each variable
  - f: function variable
  - h\_: history variable
  - th\_: timed history variable
  - i\_ : input variable
  - o\_ : output variable
  - k\_: predefined constant
  - g\_: set of function variable, history variable or timed history variable



### **FOD** (Function Overview Diagram)

- ◆ A kind of DFD (Data Flow Diagram)
- Describes the relationships between the components of NuSCR
- Display each component with a node
- Display relationships between nodes with oneway arrows
- Use group nodes when composed in classes
- Each node name follows the variable naming rule

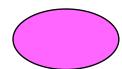


## Elements represented in FOD

Input node, Output node

Group node



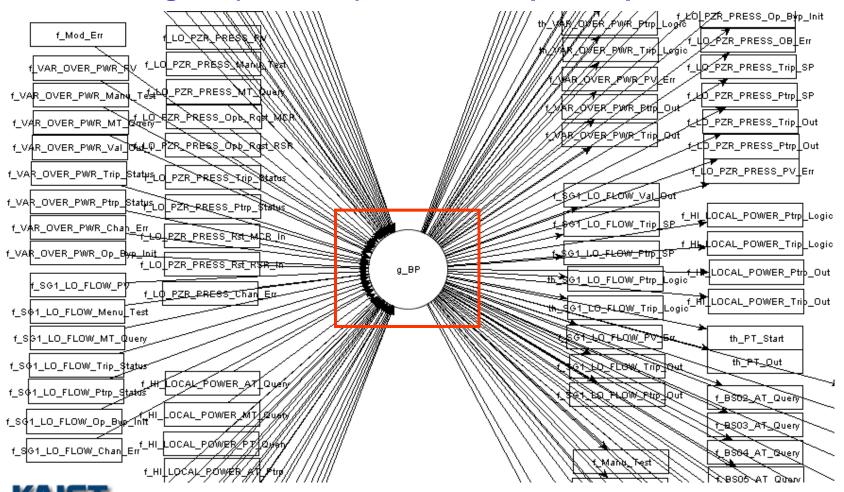

Function node



History node

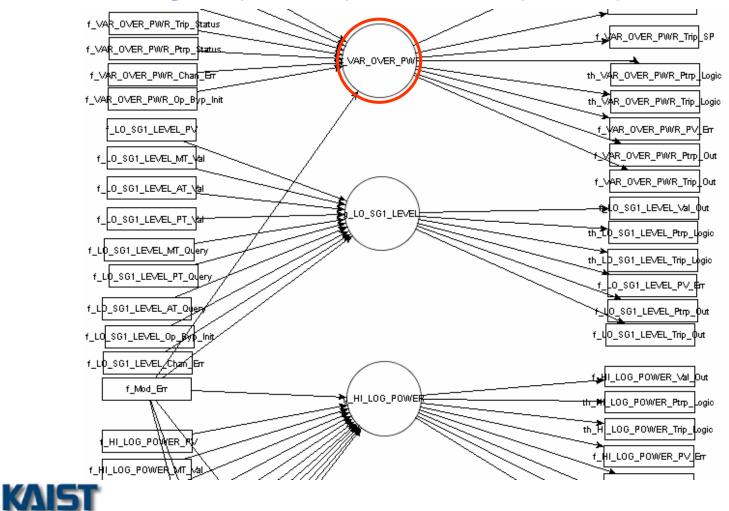


Timed history node




Data Flow or Transition

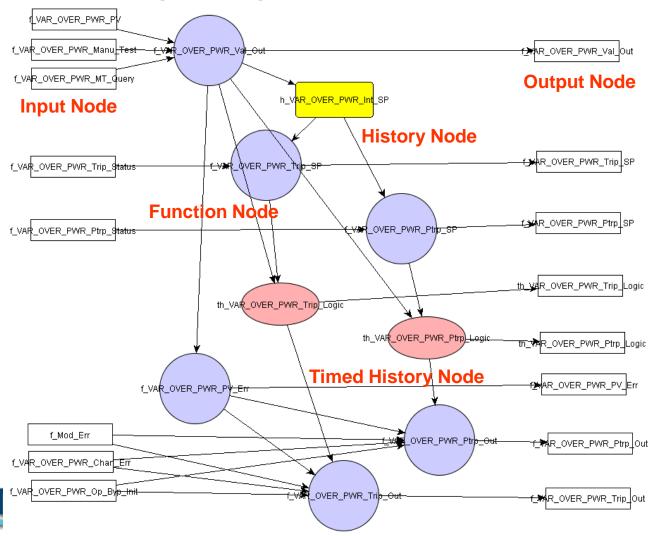



## Example of FOD (1/3)

#### g\_BP(overview) + External Input/Output



## Example of FOD (2/3)


#### g\_BP(detailed) + External Input/Output



## Example of FOD (3/3)

KAI5

#### g\_BP > g\_VAR\_OVER\_PWR



#### **Function Variable**

- Used to describe the system's functional behavior
- Defined with SDT (Structured Decision Table)
  - SDT is a type of Condition/Action table
  - Once the condition is satisfied, the action is performed
  - Familiar table style for the engineer



## **SDT** (Structured Decision Table)

- Condition
  - Complex condition composed of function variable inputs
  - ie) k\_X\_MIN <= f\_X <= k\_X\_MAX
- Action
  - Assignments for function variables
  - ie) f\_X\_Valid := 0

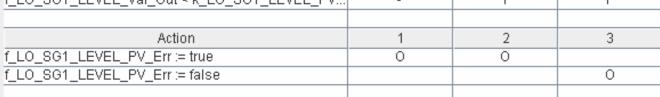


## **Examples of SDT**

| Conditions                  | 1 | 2 |
|-----------------------------|---|---|
| $k_X_MIN <= f_X <= k_X_MAX$ | Т | F |
| Actions                     | 1 | 2 |
| f_X_Valid := 0              | 0 |   |
| f_X_Valid := 1              |   | 0 |

- SDT defines the function Variable f\_X\_Valid
- Meaning
  - If f\_X is greater than or equal to k\_X\_MIN, and less than or equal to k\_X\_MAX (condition),
  - Assign 0 to f\_X\_Valid (action)




## **Example of SDT from RPS items**

Example of function variables defined through SDT

Structured Decision Table:



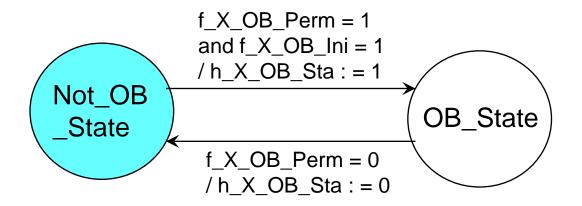
## Conditions 1 2 3 f\_LO\_SG1\_LEVEL\_Val\_Out > k\_LO\_SG1\_LEVEL\_PV... T F f\_LO\_SG1\_LEVEL\_Val\_Out < k\_LO\_SG1\_LEVEL\_PV...</td> T F





## **History Variable**

- Used to describe system's condition based action
- Defined with a FSM (Finite State Machine)
  - Components of FSM
    - > Finite number of states
    - >Transitions between states



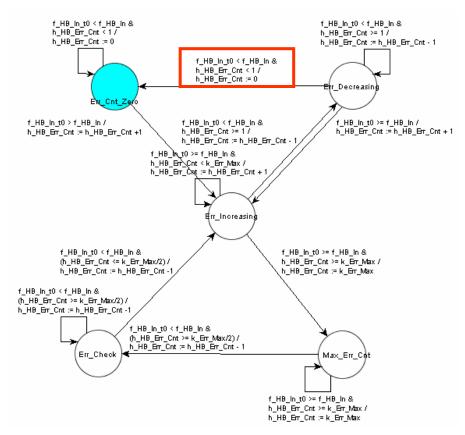

## **FSM** (Finite State Machine)

- State
  - Express each of the system's states
  - ie) A switch has two states: On and Off
- ◆ Transition
  - Represents the changes between states
  - Expressed with arrows
  - Each transition has a label
  - ▶ label form → Conditions/Actions



## **Example of FSM** (Finite State Machine)




- FSM that defines the history variable h\_X\_OB\_Sta
- Meaning
  - In the initial state NOT\_OB\_STATE
  - If the conditions f\_X\_OB\_Perm = 1 and f\_X\_OB\_Ini = 1 are satisfied (condition)
  - Assign the value 1 to h\_X\_OB\_Sta (action)
  - Move to the OB\_State (transition)



## **Example of FSM from RPS items**

Example of history variables defined through FSM

h\_HB\_Err\_Cnt



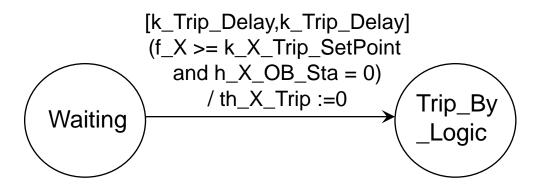


Condition: f\_HB\_In\_t0 < f\_HB\_In & h\_HB\_Err\_Cnt < 1</li>

• Action : h\_HB\_Err\_Cnt := 0

## **Timed History Variable**

- Used to describe system's time related actions
- Defined with TTS (Timed Transition System)
  - TTS is an extension of FSM
  - Time Annotated Automata
  - Adds a time restriction to FSM's transition condition
  - Attaches a time restriction in the form of [a,b] in front of the condition

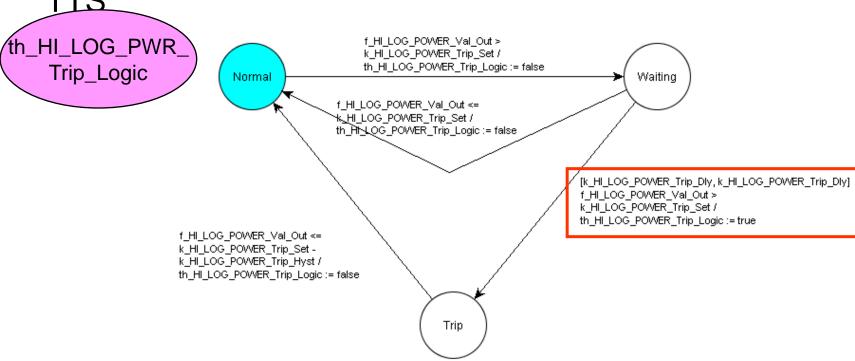



## **TTS** (Timed Transition System)

- State
  - Describes the systems' different states
- Transition
  - Represents the changes between states
  - Expressed with arrows
  - Every transition has a label
  - ▶ label format → [Time<sub>1</sub>,Time<sub>2</sub>]Conditions/Actions
  - ie) [1,4]condition=0/action:=1
    - ➤ If the condition=0 is maintained for a term of 1~4 hours, assign action=1 and change state



## Example of TTS (Timed Transition System)




- TTS that defines a part of Timed History Variable th\_X\_Trip
- Meaning
  - In Waiting state
  - For k\_Trip\_Delay hours (Time Limit)
  - If f\_X >= k\_X\_Trip\_SetPoint and h\_X\_OB\_Sta = 0 conditions are satisfied and maintained (condition)
  - Assign th\_X\_Trip the value 0 (action)
  - Move to the Trip\_By\_Logic state (transition)



## **Example of TTS from RPS items**

Example of Timed History Variable defined through



- Time duration : [k\_HI\_LOG\_POWER\_Trip\_Dly, k\_HI\_LOG\_POWER\_Trip\_Dly]
- Condition: f\_HI\_LOG\_POWER\_Val\_Out > k\_HI\_LOG\_PWR\_Trip\_Set
- Action : th\_HI\_LOG\_PWR\_Trip\_Logic := true

