NuSCR Manual

(ver. 1.0)

Dependable Software Lab. KAIST

1 What is NuSCR?

- Nuclear + SCR(Software Cost Reduction)
- Fixed form language for describing requirements
- Suitable for software technology that receives input, performs control logic and gives output
- Suitable for nuclear energy field required technology

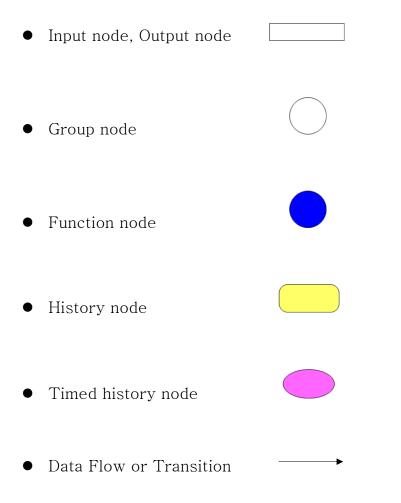
2 Background of NuSCR

- Expansion of the ACEL(Wolsong) method
- ACEL(Wolsong)
 - > Basic structure : FOD (Function Overview Diagram)
 - > Function : SDT (Structured Decision Table) function table
 - ➢ History : State node + function
 - Timing : Timing function
- NuSCR
 - ➢ Basic structure : FOD
 - ▶ Function : 개선된 SDT function table
 - ➢ History ∶ Automata
 - > Timing : Time Annotated Automata

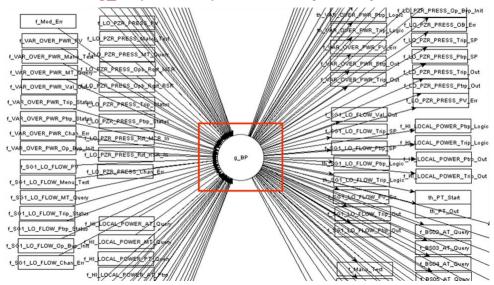
3 Components of NuSCR

- Input variable
- Output variable
- Function variable
- History variable
- Timed history variable
- FOD (Function Overview Diagram)

4 Variable naming rules

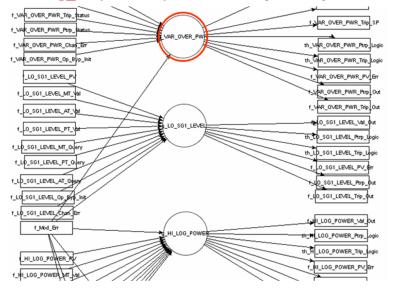

- Add the corresponding prefix to each variable
 - > f_{-} : function variable
 - ▶ h_: history variable

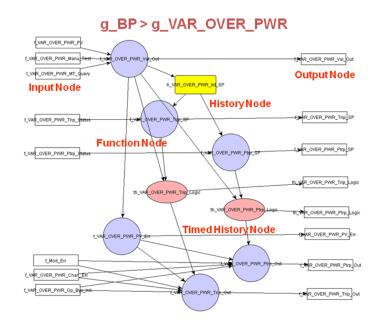
- ➤ th_: timed history variable
- ▶ i_: input variable
- ➢ o_ : output variable
- ➢ k_: predefined constant
- ➢ g_: set of function variable, history variable or timed history variable


5 FOD(Function Overview Diagram)

- A kind of DFD (Data Flow Diagram)
- Describes the relationships between the components of NuSCR
- Display each component with a node
- Display relationships between nodes with one-way arrows
- Use group nodes when composed in classes
- Each node name follows the variable naming rule

5.1 Elements represented in FOD




5.2 Example of FOD

g_BP(overview) + External Input/Output

6 Function Variable

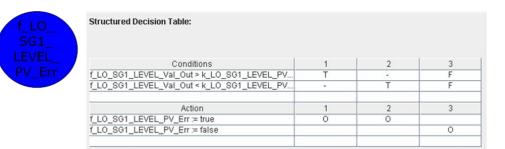
- Used to describe the system's functional behavior
- Defined with SDT (Structured Decision Table)
 - > SDT is a type of Condition/Action table
 - > Once the condition is satisfied, the action is performed
 - > Familiar table style for the engineer

6.1 SDT(Structured Decision Table)

- Condition
 - > Complex condition composed of function variable inputs
 - \succ ie) k_X_MIN <= f_X <= k_X_MAX
- Action
 - Assignments for function variables
 - ➢ ie) f_X_Valid := 0

6.2 Examples of SDT

Conditions	1	2
$k_X_MIN \le f_X \le k_X_MAX$	Т	F
Actions	1	2
$f_X_Valid := 0$	0	
$f_X_Valid := 1$		0

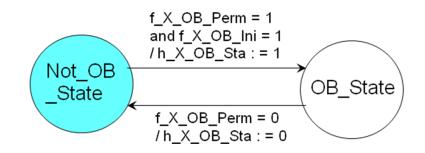

• SDT defines the function Variable f_X_Valid

• Meaning

- If f_X is greater than or equal to k_X_MIN, and less than or equal to k_X_MAX (condition),
- > Assign 0 to f_X_Valid (action)

6.3 Examples of SDT from RPS items

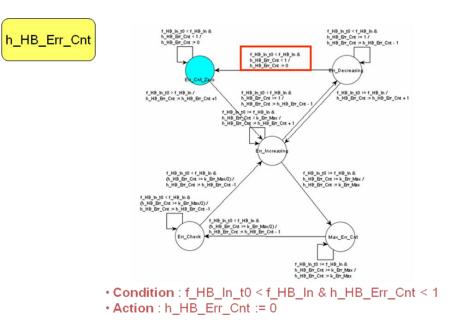
• Example of function variables defined through SDT


7 History Variable

- Used to describe system's condition based action
- Defined with a FSM (Finite State Machine)
 - ➢ Components of FSM
 - Finite number of states
 - Transitions between states

7.1 FSM(Finite State Machine)

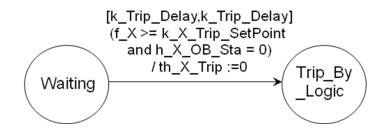
- State
 - > Express each of the system's states
 - ▶ ie) A switch has two states : On and Off
- Transition
 - > Represents the changes between states
 - Expressed with arrows
 - > Each transition has a label
 - ▶ label form \rightarrow Conditions/Actions


7.2 Example of FSM

- FSM that defines the history variable h_X_OB_Sta
- Meaning
 - ➢ In the initial state NOT_OB_STATE
 - ➢ If the conditions f_X_OB_Perm = 1 and f_X_OB_Ini = 1 are satisfied (condition)
 - > Assign the value 1 to h_X_OB_Sta (action)
 - > Move to the OB_State (transition)

7.3 Example of FSM from RPS items

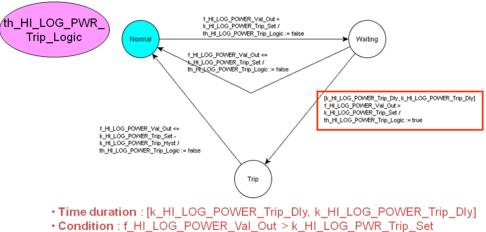
• Example of history variables defined through FSM


8 Timed History Variable

- Used to describe system's time related actions
- Defined with TTS (Timed Transition System)
 - ▶ TTS is an extension of FSM
 - Time Annotated Automata
 - > Adds a time restriction to FSM's transition condition
 - > Attaches a time restriction in the form of [a,b] in front of the condition

8.1 TTS(Timed Transition System)

- State
 - > Describes the systems' different states
- Transition
 - Represents the changes between states
 - Expressed with arrows
 - > Every transition has a label
 - > label format \rightarrow [Time₁,Time₂]Conditions/Actions
 - ➢ ie) [1,4]condition=0/action:=1
 - If the condition=0 is maintained for a term of 1~4 hours, assign action=1 and change state


8.2 Example of TTS

- TTS that defines a part of Timed History Variable th_X_Trip
- Meaning
 - ➢ In Waiting state
 - For k_Trip_Delay hours (Time Limit)
 - If f_X >= k_X_Trip_SetPoint and h_X_OB_Sta = 0 conditions are satisfied and maintained (condition)
 - > Assign th_X_Trip the value 0 (action)
 - > Move to the Trip_By_Logic state (transition)

8.3 Example of TTS from RPS items

• Example of Timed History Variable defined through TTS

• Action : th_HI_LOG_PWR_Trip_Logic := true