

2013 International Workshop on ICT (Beppu, Japan, 12-14 December 2013)

 1

ⓒ2013 Information Processing Society of Japan & Korean Institute of Information Scientists and Engineers

RT-Selection : A Regression Test Selection Technique Using Textual

Differencing and Change Impact Analysis

Eui-Sub Kim
†1 Dong-Ah Lee

†2 Junbeom Yoo
†3

Abstract: Regression testing intended to provide confidence that newly introduced changes do not obstruct the behaviours of

the existing and unchanged parts of the software. One of simple and basic regression testing techniques is retest-all, but it

requires lot of time and cost. The regression test selection technique selects a subset of previous test cases to retest the changed

software. It, therefore, can reduce the time and cost through reducing the number of test cases for regression testing. This paper

proposes a new regression test selection technique, RT-Selection, which can perform the regression test more effectively than the

existing selection techniques. It can be explained in two approaches. First, it uses textual differencing to fine change. Second, it

uses change impact analysis to fine the software riffle to trace test cases. RT-Selection helps testers efficiently select a subset

from previous test cases for regression testing. We also propose 4 Guidelines and inference rules to support this technique.

Guidelines and inference rules help testers can perform this technique more systemically. We performed a case study to show

feasibility of the proposed technique with graduate and undergraduate software engineering classes in Konkuk University.

Keywords: Regression testing, Regression test selection, Textual differencing, Change impact analysis

1. Introduction

Regression testing is performed when changes are made to

existing software. The purpose of regression testing is to

provide confidence that the newly introduced changes do not

obstruct the behaviours of the existing, unchanged part of the

software [1]. One of simple and basic regression testing

techniques is retest-all. The retest-all performs all test cases

again. However, the cost of testing has been exponentially rising

on account of the complexity and size of the modern software.

In order to reduce the cost, various strategic regression testing

techniques have been proposed in the past. One of the widely

known techniques is regression test selection which can reduce

the time and cost (see [2][3][4]).

The regression test selection technique selects a subset of

previous test cases to retest the changed software only. By

reducing the number of test cases, it is able to perform cost

effective regression testing. [5] defined the regression test

selection problem as follows: Given a program P, a modified

version P', and a test set T used previously to test P, regression

testing techniques attempt to make use of T to gain sufficient

confidence in the correctness of P'. In order to accomplish the

sufficient confidence of the correctness between of P and P', we

found two necessary activities such as (1) identification of

modifications and (2) selection of subsets of test cases.

This paper proposes a new regression test selection technique,

RT-Selection, which reflects the two necessary activates. First, it

uses the textual differencing to identify the modifications. The

textual differencing is a result from the comparison between

statements of old and new versions of code. Textual differencing

results help testers identify changed point and elements affected

by previous changes.

Second, it uses a change impact analysis approach to select a

subset of test cases. [6] defined that change impact analysis is

determination of potential effects to a subject system resulting

 † Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 143-701, Korea

a) atang34@konkuk.ac.kr

 b) ldalove@konkuk.ac.kr

 c) jbyoo@konkuk.ac.kr

from a proposed software change. To understand the software

with respect to the change, a tester must ascertain parts of the

software that will be affected by the change and examine them

for possible further impacts [7]. The RT-Selection proposes to

use a footprint that will be inserted to the old code in order to

identify the changed parts of the software (riffle). If one of the

test cases is performed with the old code inserted footprints, a

footprint list would be produced. The tester, then, can be aware

of the trace of test cases by the footprints list.

With the support of the two techniques, the RT-Selection can

help testers select a subset of test cases efficiently for regression

testing. We performed a case study to show feasibility of the

RT-Selection with graduate and undergraduate software

engineering classes in Konkuk University. We obtain 18

obsolete test cases, 2 re-testable test cases which mean that

those are test cases selected by RT-Selection and 52 not

necessary to retest test cases from 72 whole test cases.

RT-Selection produces the 3 type test cases. Those type help

testers can classify test cases for regression testing.

This paper is organized as follows. Section 2 provides

backgrounds such as regression testing and test cases selection

techniques. In section 3, we introduce the detail process

proposed technique. Section 4 reports the result of the case study,

and Section 5 concludes the paper and presents our future work

2. Backgrounds

A regression test selection technique chooses, from an

existing test set, tests that are deemed necessary to validate

modified software [4]. The RT-Selection is based on this

technique. Many selective regression testing techniques have

been introduced. If you want to see this techniques, you could

refer to the literature [2][3][4].

Pythia [8] developed by F. I. Vokolos and P. G. Frankl is a

regression testing tool, which realize the regression test

selection technique. It selects some test cases from the whole

test cases, based on textual deference.

TestTube[9] developed by Chen, Rosenblum, and Vo is a tool,

which combines static and dynamic analysis to perform

2013 International Workshop on ICT (Beppu, Japan, 12-14 December 2013)

 2

ⓒ2013 Information Processing Society of Japan & Korean Institute of Information Scientists and Engineers

selective retesting of software written in C. It identifies which

functions, types, variables and macros are covered by each test

unit in a test suite and which entities were changed to create the

new version. Using the coverage and change information,

TestTube selects the test cases for retesting.

3. The RT-Selection Technique

This section presents an overview of the RT-Selection

technique as described in Figure 1. It consists of 7 phases as

follows:

3.1 (Phase 1) Canonical Formatting

Canonical formatting is task that each different style forms

convert into canonical form. Both of code (old and new) may

not be same even if a function of the software were equivalent

since developers have own coding styles individually. Textual

differencing, however, compares old and new code in terms of

text one by one (ex, blank lines, comment lines, and different

coding styles so on.). Thus, it is necessary for testes to convert

into canonical form in order to obtain correct results.

(A) and (B) in Figure 2 show two source codes in different

styles, but both have the same behavior. Furthermore, they are

exactly same after conversion into the canonical form. To

convert canonical form, any method, any form or any style is

not restriction. Only necessary task is to make canonical form

with the same style

Figure 2 An example of the old, new and canonically formatted

codes

3.2 (Phase 2) Code Analysis and Inserting Footprint

Code analysis is task to understand the meaning about

sentence of code. The purpose of code analysis is to identify

both affected and affecting elements. And, inserting footprint is

task to insert appropriate footprints that will notify testers about

the interrelation of elements. Elements, testers should focus on,

are follows: assignment, function return, function call, condition

statement and iteration statement. For example, given sentence

is “a = b + 1”, it is element to insert the footprint since it is

that the variable “a” is effected by variable “b” or the variable

“b” is effecting the variable “a”), should be inserted above the

sentence

Figure 3 The old codes with inserted footprints

Figure 3 shows an example of the footprint insertion. It

inserted footprints into the canonically formatted code in Figure

2. The insertion, however, takes much time and cost as

described in Figure 3. The RT-Selection proposes 4 guidelines,

which can help testers perform this phase more systematically,

as follows:

Guideline 1. If the sentence includes assignment, function

return and function call, the necessary footprint is as follows:

 Assignment: “Left element = Right element”

- Footprint: “Left element  Right element”

 Function return: “return something”

- Footprint: “function name ()  something”

Figure 1 An overview of the RT-Selection technique

2013 International Workshop on ICT (Beppu, Japan, 12-14 December 2013)

 3

ⓒ2013 Information Processing Society of Japan & Korean Institute of Information Scientists and Engineers

 Function call

- Footprint: “function name ()  parameter”

Guideline 2. If the sentence includes a condition statement (ex.,

If the sentence includes a condition statement (ex., if, switch,

etc.), the necessary footprint is as follows:

 Condition statement:

- Footprint: “(ordinal number)_(context)_condition

 used element in condition statement”

The ordinal number is a sequence number used in the function.

The context is identification of the statement (ex., if, switch, so

on). In addition, if one of the elements in Guideline 1 is

included at the function of condition statement, the necessary

footprint is as follows:

 Element of Guideline 1 in the condition statement

- Footprint: “Left element  (ordinal number)_(id)_

condition”

Guideline 3. If the sentence includes an iteration statement (ex.,

for, while, etc.), the necessary footprint is as follows:

 Iteration statement:

- Footprint: “(ordinal number)_(id)_condition  used

element in condition of iteration statement”

 And, the other things refer the ‘Guideline 2.’

Guideline 4. The expression of footprint with Guidelines 1-3

can be enumerated as follows.

 Enumeration:

- Footprint: “Left element  (ordinal number)_(id)_

condition_(ordinal number)_(id)_condition; ….”

3.3 (Phase 3) Testing Execution

Testing execution is task to perform the unit testing with

existing test cases to the old code. When testing is done, testers

can obtain footprint list such as (A) of Figure 4 which is trace of

test case in the software components. But, it may have many

duplicated elements. Thus, if testers want the compact size,

testers can eliminate duplicated footprint (B) of Figure 4.

Figure 4 An example of footprint list and reduced result

3.4 (Phase 4) Assumption Analysis

Assumption analysis is task to identify what elements will

affect to the assumption of unit test case. For unit testing, testers

can use more than one element such as unit, global or instance

elements. However, all of elements do not affect the assumption

because some of them are merely used for initialization or

setting so on. Thus, testers should identify elements affecting

the assumption exactly.

Figure 5 depicts the test case of unit testing (A) and

assumption analysis list (B). In this case, the assumption is

“expected_value == 3.” Using this assumption, testers have to

obtain the result as “expected_value  Calc()” because

‘expected_value’ affects to the assumption, and ‘Calc()’ affects

the ‘expected_value.’

Figure 5 An example of an unit test case and an assumption

analysis list

3.5 (Phase 5) Change Impact Analysis

Change impact analysis (CIA) is task to identify exact

elements that affect to one of assumption analysis list. The

footprint list is merely collection all of elements executed by

test case. However, those all does not affects to the elements in

the assumption list. In older words, if the element did not affect

to the assumption, the element would not important element

even if it was affected by change. Therefore, it is necessary to

fine actual affecting elements.

(A) of Figure 6 depicts inference process. The expected value

of the bottom line is a start point that is one of elements in the

assumption analysis list. And the next is to identify associated

elements step by step. The collection of associated elements is

change impact analysis list. (B) of Figure 6 depicts the change

impact analysis list.

Figure 6 An inference rule and corresponding change impact

analysis list

3.6 (Phase 6) Textual Differencing and Change Analysis

The textual differencing is a result from the comparison

between statements of old and new versions of a source code.

Textual differencing compares old and new code in terms of text

one by one. Change analysis is task to analyze what elements is

affected by change using result of textual differencing.

(A) and (B) of Figure 7 depict the change detection by textual

differencing. (C) of Figure 7 depicts the result of interpretation

about sentence of change point. In addition, if sentence include

change of the type of variable or parameter of function, testers

could insert tag “obsolete” to the result. The tag helps testers

select test cases more easily.

2013 International Workshop on ICT (Beppu, Japan, 12-14 December 2013)

 4

ⓒ2013 Information Processing Society of Japan & Korean Institute of Information Scientists and Engineers

Figure 7 An example of change analysis list

3.7 (Phase 7) Comparing

Comparing is task to identify coincided elements between

impact analysis list and change analysis list. If elements of both

results coincided, testers could select the test case for regression

testing. Figure 8 depicts an example of coincidence. In addition,

if change analysis list have the tag “obsolete,” tester could

ignore this test case since this test case is useless any more for

the new software.

Figure 8 A comparing result

4. Case Study

We, a test team, have applied the RT-Selection to the software

developed team in the undergraduate class. The development

team released the softwares reflecting test results. A purpose of

the undergraduate class is development of a digital watch

system (DWS). The development teams reflected results of the

testing by testing team to fix faults. We have performed the

RT-Selection to DWS developed by development team.

The result is that the total number of test cases for DWS is 72.

After applying the RT-Selection, 18 test cases have a tag

“Obsolete,” which mean that they do not need to retest because

the format have changed or have no target units in the new

version. We obtain 2 test cases that have coincident elements in

both change impact analysis list and change impact analysis list.

It means that those test cases executed affected element and the

element affects the assumption of test case. Thus, those test

cases must retest to provide confidence between old and new

software. The other test cases are not need to retest, because

they are not executing the affected element or affected element

are not affecting the assumption. In conclusion, we could able to

obtain 18 obsolete test cases, 2 re-testable test cases and 52 test

cases that is not necessary to retest.

5. Conclusion and Future work

Regression testing is one of test activities to check whether

changes of software make new bugs and errors. But, regression

testing has problem in terms of cost. To solve this problem, we

propose a regression test selection technique, RT-Selection, for

reducing regression testing cost; it uses the text differencing and

change impact analysis. This technique has 7 phases and some

of Guidelines and inference rules to support the systemic

procedure. We performed case study with DWS software. We

had classified the existing test cases to the 3 types. It is useful to

perform a regression testing. We are now planning to implement

a set of automation tools for the RT-Selection. It would increase

usability of the RT-Selection, and be more helpful for regression

testers.

References
1) S. Yoo, M. Harman: Regression testing minimization, selection and

prioritization: a survey, Software Testing, Verification and Reliability,

Vol.22, No.2, pp.67-120 (2012).

2) J. Bible, G. Rothermel, D. S. Rosenblum: A comparative study of

coarse-and fine- grained safe regression test- selection techniques,

ACM Transactions on Software Engineering and Methodology

(TOSEM), Vol.10, No.2, pp.149-183 (2001).

3) S. Biswas, R. Mall, M. Satpathy, S. Sukumaran: Regression test

selection techniques: A survey, Informatica: An International Journal

of Computing and Informatics, Vol.35, No.5, pp.289-321 (2011).

4) G. Rothermel, M. J. Harrold: A safe, efficient regression test selection

technique, ACM Transactions on Software Engineering and

Methodology (TOSEM), Vol.6, No.2, pp.173-210 (1997).

5) G. Rothermel, M. J. Harrold: Selecting tests and identifying test

coverage requirements for modified software, Proceedings of the

1994 ACM SIGSOFT international symposium on Software testing

and analysis, pp.169-184, ACM (1994)

6) R. S. Arnold, S. A. Bohner: Impact analysis-towards a framework for

comparison, Software Maintenance, 1993. CSM-93, Proceedings,

Conference on, pp.292-301, IEEE (1993).

7) S. A. Bohner: Extending software change impact analysis into cots

components, Software Engineering Workshop, 2002. Proceedings.

27th Annual NASA Goddard/IEEE, pp.175-182, IEEE (2002).

8) FI. Vokolos, PG. Frankl: Pythia: a regression test selection tool based

on textual differencing, Reliability, quality and safety of software-

intensive systems, pp.3-21, Springer (1997)

9) Y-F. Chen, D.S. Rosenblum, K-P. Vo: TestTube: A System for

Selective Regression Testing, Proc. 16th Int. Conf. on Software

Engineering, pp. 211-220 (1994)

Acknowledgments This research was supported by a grant from

the Korea Ministry of Strategy, under the development of the

integrated framework of I&C conformity assessment,

sustainable monitoring, and emergency response for nuclear

facilities.

