

VIS 코드 분석

2012. 11

Dependable Software Laboratory

건국대학교

 1

Contact Point:

 Eui-Sub Kim (atang34@naver.com) : MS Student at Konkuk University

This research was supported by the National Research Foundation of Korea (NRF-

2015R1D1A1A02062154).

 2

내용

1 서론 .. 6

2 VIS 코드 분석 ... 7

2.1 abs .. 8

2.2 amc .. 9

2.3 baig ... 10

2.4 bmd .. 11

2.5 ctlp .. 12

2.6 ctlsp .. 12

2.7 eqv ... 13

2.8 fsm .. 14

2.9 grab .. 15

2.10 hmc ... 16

2.11 img .. 17

2.12 img .. 18

2.13 io .. 21

2.14 ltl .. 22

2.15 maig .. 23

2.16 mark ... 24

2.17 mc .. 24

2.18 mvf .. 25

2.19 mvfaig ... 26

2.20 ntk ... 27

 3

2.21 ntm .. 29

2.22 ntmaig ... 29

2.23 ord ... 30

2.24 part ... 31

2.25 puresat .. 33

2.26 res .. 34

2.27 restr .. 35

2.28 rst ... 36

2.29 rt ... 37

2.30 sat .. 38

2.31 sim ... 39

2.32 spfd ... 40

2.33 tbl ... 41

2.34 tbl ... 43

2.35 truesim .. 44

2.36 tst ... 44

2.37 var .. 45

2.38 vm .. 46

3 결론 ...오류! 책갈피가 정의되어 있지 않습니다.

참고 문헌 ...오류! 책갈피가 정의되어 있지 않습니다.

 4

그림 목차

그림 1. VIS의 기능 블록 다이어그램 [4] ... 6

그림 2 VIS DIRECTORY REFERENCES ... 8

그림 3 ABS DIRECTORY REFERENCE ... 8

그림 4 AMC DIRECTORY REFERENCE .. 10

그림 5 BAIG DIRECTORY REFERENCE .. 10

그림 6 BMC DIRECTORY REFERENCE .. 11

그림 7 CTLP DIRECTORY REFERENCE .. 12

그림 8 CTLSP DIRECTORY REFERENCE .. 13

그림 9 EQV DIRECTORY REFERENCE ... 14

그림 10 FSN DIRECTORY REFERENCE ... 15

그림 11 GRAB DIRECTORY REFERENCE .. 16

그림 12 HRC DIRECTORY REFERENCE... 17

그림 13 IMC DIRECTORY REFERENCE ... 18

그림 14 IMG DIRECTORY REFERENCE ... 20

그림 15 IO DIRECTORY REFERENCE .. 21

그림 16 LTL DIRECTORY REFERENCE .. 22

그림 17 MAIG DIRECTORY REFERENCE .. 23

그림 18 MARK DIRECTORY REFERENCE ... 24

그림 19 MC DIRECTORY REFERENCE .. 25

그림 20 MVF DIRECTORY REFERENCE .. 26

그림 21 MVFAIG DIRECTORY REFERENCE .. 26

그림 22 NTK DIRECTORY REFERENCE ... 28

그림 23 NTM DIRECTORY REFERENCE.. 29

그림 24 NTMAIG DIRECTORY REFERENCE.. 30

그림 25 ORD DIRECTORY REFERENCE .. 31

그림 26 PART DIRECTORY REFERENCE ... 32

그림 27 PIRESAT DIRECTORY REFERENCE .. 33

그림 28 RES DIRECTORY REFERENCE .. 35

그림 29 RESTR DIRECTORY REFERENCE ... 36

그림 30 RST DIRECTORY REFERENCE.. 37

그림 31 RT DIRECTORY REFERENCE .. 38

그림 32 SAT DIRECTORY REFERENCE .. 38

file:///C:/Users/EUI-SUB/Desktop/VIS%20분석.docx%23_Toc459200421
file:///C:/Users/EUI-SUB/Desktop/VIS%20분석.docx%23_Toc459200422

 5

그림 33 SIM DIRECTORY REFERENCE ... 40

그림 34 SPFD DIRECTORY REFERENCE ... 41

그림 35 SYNTH DIRECTORY REFERENCE .. 42

그림 36 TBL DIRECTORY REFERENCE .. 43

그림 37 TRUESIM DIRECTORY REFERENCE ... 44

그림 38 TST DIRECTORY REFERENCE .. 45

그림 39 VAR DIRECTORY REFERENCE ... 45

그림 40 VM DIRECTORY REFERENCE .. 46

 6

1 서론

VIS [1]는 정형검증, 논리합성, 클럭 기반의 시뮬레이션, CTL(Computational Tree Logic) 모델

체킹, 순차적 동시성 검증 (sequential equivalence checking) 기능, 조합적 동치성 검증

(combinational equivalence checking) 기능 등을 제공하는 통합 개발 및 검증 도구이다. VIS는

Verilog를 입력언어로 받아들이며, 내부적으로 vl2mv [2] 라는 변환기를 이용하여 VIS 내부 포맷인

BLIF-MV [3] 파일로 변환한 후 기능을 수행한다. 동치성 검사는 두 프로그램이 동일한 입력에 대

해 동일한 출력을 내보내는지 확인하는 정형 기법으로 모든 입력 조합을 이용하여 출력을 확인한

다. 내부적으로 회로를 이진 결정 다이어그램(Binary Decision Diagram)을 생성하여 수행을 하며,

이 이진 다이어그램의 크기에 따라 검증 속도 차이 나게 된다.

그림1은 VIS의 대표 기능을 블록 다이어그램으로 보여주고 있다. VIS는 크게 3파트로 나누어

진다. (1) Front end 파트, (2) Verification 파트 (VIS-V), (3) Synthesis 파트 (VIS-S)

Front end 파트에서는 high-level language인 Verilog를 읽고 컴파일한다. 여기서 사용되는 도

구는 bl2mv이고 Verilog는 BLIF-MV로 파일로 변환된다.

Verification 파트는 검증을 수행하는 부분이다. 오직 CTL formula만 검증이 가능하며, fairness

constraints 는 Buchi 타입으로 정의되어야 한다.

Synthesis 파트는 system을 간략화하는 부분으로써, multi-level circuit의 verilog를 gate level로

변환한다.

그림 1. VIS의 기능 블록 다이어그램 [4]

 7

2 VIS 코드 분석

VIS는 아래 Directory List로 구성되어 있고, 각각의 Directory의 관계는 아래 그림과 같다

Directory Synopsis

abs Incremental CTL model checker

amc Model Check using over(under)-approximation of the transition relation

baig Binary AND/INVERTER graph

bmc bounded model checking (BMC) header file

cmd Implements command line interface, and miscellaneous commands

ctlp Routines for parsing, writing and accessing CTL formulas

ctlsp Routines for parsing, writing and accessing CTL* formulas

eqv Provides commands for doing combinational and sequential verification on two networks

fsm Finite state machine abstraction of a network

grab Abstraction refinement for large scale invariant checking

hrc Hierarchical representation of a design

imc Model Check using over(under)-approximation with automatic iterative refinement

img Methods for performing image computations

io Routines for reading and writing BLIF-MV files

ltl Internal declarations

maig multi-valued AND/INVERTER graph

mark Data structures used in Markovian analysis

mc Fair CTL model checker and debugger

mvf Creation and manipulation of MDD-based multi-valued functions

mvfaig Creation and manipulation of And Inv-based multi-valued functions

ntk Flat network of multi-valued combinational nodes and latches

ntm Construction of MDDs from a flattened network

ntmaig Construction of mAigs from a flattened network

ord Routines for ordering MDD variables of a flattened network

part Partition of a system and creation of MDDs

puresat Abstraction refinement for large scale invariant checking

res Combinational verification by residue arithmetic

restr STG restructuring package

rst Restructuring package for restructuring the hierarchy

rt Regression test

sat Internal data structures of the sat package

sim Simulation of a flattened network

spfd SPFD-based wire removal and replacement algorithm for logic optimization of combinational

circuits mapped to FPGAs

synth Symbolic synthesis package

tbl Routines for manipulating a multi-valued relation representation

truesim Exported functions and data structures for the truesim package

tst Test package illustrating VIS conventions

var Multi-valued variables

vm "Main" package of VIS ("vm" = VIS main)

 8

2.1 abs

This package provides the command "incremental_ctl_verification", an algorithm to verify CTL

formulas starting from an initial abstraction and applying refinements to increment the level of

accuracy in the verification.

그림 3 ABS directory reference

그림 2 VIS directory references

 9

file Synopsis

abs.h Incremental CTL model checker

absCatalog.c Functions to handle a catalog of sub-formulas to detect common sub-expressions

absCmd.c Encapsulation for the incremental_ctl_verification command

absEvaluate.c Evaluation procedures for the abstraction based mu-calculus model checker

absInt.h Internal declarations required for the incremental CTL model checker

absInternal.c Miscelaneous functions to handle caches, don't care conditions, initialization and deallocation

of structures, etc

absRefine.c Abstraction Refinement procedures for the mu-calculus model checker

absTranslate.c Functions to translate CTL formulas to mu-calculus graphs

absUtil.c Some miscelaneous functions for non-critical tasks such as printing information, sanity checks,

etc

2.2 amc

The package implements the approximate_model_check command. The command is designed

as a wrapper around the model_check command. The command contains dual algorithms.

Predefined abstraction of the transition relation is performed in a controlled way to ensure that

the result is reliable. By default, the command makes its effort to prove whether the given ACTL

formula is positive. User must set an environment variable "amc_prove_false" when he/she wishes

to prove whether the given ACTL formula is negative. When the formula is proven FALSE, then

the error trace is returned as in the model_check command. Currently, one predefined

approximation method, namely a "block-tearing" method, is implemented. The package

manipulate the internal data structure of FSM to obtain over(under)-approximation of a given

system. The algorithm begin with coarse approximation in which the degree of initial

approximation is set by the user. Initial degree of approximation can be set by using

"amc_sizeof_group" environment. When the initial attempt using the coarse approximation fails,

the algorithm automatically combine subsystems(take synchronous product) to obtain refined

approximations. The procedure is repeated until the approximation is good enough so that the

result is reliable.

 10

그림 4 amc directory reference

 Synopsis

amc.h Model Check using over(under)-approximation of the transition relation

amcAmc.c Model check formula with approxmiations

amcBlock.c Set best system

amcCmd.c Ends the amc package

amcInt.h Internal data type definitions and macros to handle the structures of the amc package

2.3 baig

그림 5 baig directory reference

 11

 Synopsis

amc.h Model Check using over(under)-approximation of the transition relation

amcAmc.c Model check formula with approxmiations

amcBlock.c Set best system

amcCmd.c Ends the amc package

amcInt.h Internal data type definitions and macros to handle the structures of the amc package

2.4 bmd

그림 6 bmc directory reference

 Synopsis

bmc.h bounded model checking (BMC) header file

bmcAutSat.c Automaton for BMC

bmcAutUtil.c Utility file for BMC_Automaton

bmcBmc.c SAT-based ltl model checker

bmcCirCUs.c BMC ltl model checker using CirCUs

bmcCirCUsUtil.c Utilities for bmcCirCUs

bmcCmd.c Command interface for bounded model checking (bmc)

bmcInt.h Internal header declarations

bmcUtil.c Utilities for BMC package

 12

2.5 ctlp

This package implements a parser for CTL (Computation Tree Logic) formulas. CTL is a

language used to describe properties of systems.

External functions and data strucures of the binary AND/INVERTER graph package.

그림 7 ctlp directory reference

 Synopsis

ctlp.h Routines for parsing, writing and accessing CTL formulas

ctlpCmd.c Command to read in a file containing CTL formulas

ctlpInt.h Declarations for internal use

ctlpUtil.c Routines for manipulating CTL formulas

2.6 ctlsp

This package implements a parser for CTL* formulas. CTL* is a language used to describe

properties of systems

 13

그림 8 ctlsp directory reference

 Synopsis

ctlsp.h Routines for parsing, writing and accessing CTL* formulas

ctlspCmd.c Command to read in a file containing CTL* formulas

ctlspInt.h Declarations for internal use

ctlspUtil.c Routines for manipulating CTL* formulas

2.7 eqv

The eqv package provides two commands - comb_verify and seq_verify for doing

combinational and sequential verification respectively. Two networks along with options for

partitioning and ordering form the input to the commands.

 14

그림 9 eqv directory reference

 Synopsis

eqvCmd.c Implements the eqv commands

eqvInt.h

eqvMisc.c This file provides some miscellaneous functions for the eqv package

eqvVerify.c This file contains the two routines which do combinational and sequential verification

eqv.h Provides commands for doing combinational and sequential verification on two networks

2.8 fsm

A finite state machine contains a pointer to a network, so it inherits all the information that is

contained in the network, such as node names and MDD ids. An FSM has a partition associated

with it; the output and next state functions are derived from the partition. This partition does not

necessarily have to be the default partition associated with the network.

 Synopsis

fsm.h Finite state machine abstraction of a network

fsmArdc.c Routines to perform overapproximate reachability on the FSM structure

fsmCmd.c Commands for the FSM package

fsmFair.c Implementation of fairness constraints data structure

fsmFsm.c Routines to create and manipulate the FSM structure

fsmHD.c Routines to perform high density reachability on the FSM structure

fsmInt.h Internal declarations for fsm package

fsmReach.c Routines to perform reachability on the FSM structure

 15

그림 10 fsn directory reference

2.9 grab

Abstraction refinement for large scale invariant checking

 Synopsis

grab.h Abstraction refinement for large scale invariant checking

grabBMC.c Check abstract paths on a more concrete model using SAT

grabGrab.c The GRAB algorithm of computing a set of refinement variables

grabInt.h Internal declarations

grabUtil.c The utility functions for abstraction refinement

grab.c Abstraction refinement for large scale invariant checking

 16

그림 11 grab directory reference

2.10 hmc

The concept of a hierarchy is directly related to the constructs in a blifmv file. It is built

around three important data structures viz. Hrc_Model_t, Hrc_Subckt_t and Hrc_Node_t. These will

be referred to as model, subckt and node.

A model corresponds directly to a model definition in a blifmv file. It can be viewed as a

black box with some I/O pins. A model could call another model as a module within itself using

names for the I/O pins which are, in general, different from those actually used inside the model

that is called. The correspondence between the two sets of names is stored in a subckt. A call to a

model will henceforth be referred to as an instantiation of the model.

Since a given model could be called by many other models, it is necessary to distinguish

between its different instantiations. An instantiation is represented by a node. A hierarchy is a

tree of nodes. The root node of the tree corresponds to the single instantiation of the root model

in a blifmv file. An instantiation of a model results in the instantiation of all models recursively

called by it. Thus, the instantiation of root model results in a tree structure being formed.

 17

There is also a structure called a hierarchy manager which contains a list of all models and

pointers to the root node and the current node. The current node represents the current position

in the hierarchy. The designer can, if he wishes, make changes in this node only, or modify the

whole sub-tree below it.

그림 12 hrc directory reference

 Synopsis

hrc.h Hierarchical representation of a design

hrcCmd.c Commands for walking around HSIS/VIS hierarchies

hrcHierarchy.c Creates a hierarchy from model definitions

hrcInOut.c This file provides the functions for accessing the fields of the data structures of the hrc

package

hrcInt.h The internal declarations needed for the hierarchy

hrcMemUtil.c This file deals with the memory utilities for the hrc package

hrcMisc.c This file provides some miscellaneous functions

hrcModify.c This files provides the basic functions concerned with modifying the hierarchy.

2.11 img

 Synopsis

imc.h Model Check using over(under)-approximation with automatic iterative refinement

imcCmd.c Command interface for the imc package

imcImc.c Incremental Model Checker

imcInt.h Internal data type definitions and macros to handle the structures of the imc package

 18

그림 13 imc directory reference

2.12 img

The image package is used to compute the image (forward or backward) of a set under a

vector of functions. The functions are given by a graph of multi-valued functions (MVFs). This

graph is built using the partition package. Each vertex in this graph has an MVF and an MDD id.

The fanins of a vertex v give those vertices upon which the MVF at v depends. The vector of

functions to use for an image computation, the "roots", is specified by an array of (names of)

vertices of the graph. The domain variables are the variables over which "from" sets are defined

for forward images, and "to" sets are defined for backward images. The range variables are the

variables over which "to" sets are defined for forward images, and "from" sets are defined for

backward images. The quantify variables are additional variables over which the functions are

defined; this set is disjoint from domain variables. These variables are existentially quantified from

the results of backward image computation.

Computing images is fundamental to many symbolic analysis techniques, and methods for

 19

computing images efficiently is an area of ongoing research. For this reason, the image package

has been designed with lots of flexibility to easily allow new methods to be integrated (to add a

new method, see the instructions in imgInt.h). Applications that use the image package can switch

among different image methods simply by specifying the method type in the image initialization

routine. By using the returned structure (Img_ImageInfo_t) from the initialization routine, all

subsequent (forward or backward) image computations will be done using the specified method.

VIS users can control which image method is used by appropriately setting the

"image_method" flag. Also, VIS users can set flags to control parameters for different image

computation methods. Because the user has the ability to change the values of these flags,

Img_ImageInfo_t structs should be freed and re-initialized whenever the VIS user changes the

value of these flags.

Following are descriptions of the methods implemented. In the descriptions, x=x_1,...x_n is the

set of domain variables, u=u_1,...,u_k is the set of quantify variables, y=y_1,...,y_m is the set of

range variables, and f=f_1(x,u),...,f_m(x,u) is the set of functions under which we wish to compute

images.

Monolithic: This is the most naive approach possible. A single relation T(x,y) is constructed

during the initialization phase, using the computation (exists u (prod_i(y_i = f_i(x,u)))). To compute

the forward image, where fromUpperBound=U(x), fromLowerBound=L(x), and toCareSet=C(y), we

first compute a set A(x) between U(x) and L(x). Then, T(x,y) is simplified with respect to A(x) and

C(y) to get T*. Finally, x is quantified from T* to produce the final answer. Backward images are

computed analogously. The monolithic method does not recognize any user-settable flags for

image computation.

IWLS95: This technique is based on the early quantification heuristic. The initialization

process consists of following steps:

• Create the relation of the roots at the bit level in terms of the quantify and domain variables.

• Order the bit level relations.

• Group the relations of bits together, making a cluster whenever the BDD size reaches a

threshold.

• For each cluster, quantify out the quantify variables which are local to that particular cluster.

• Order the clusters using the algorithm given in "Efficient BDD Algorithms for FSM Synthesis and

 20

Verification", by R. K. Ranjan et. al. in the proceedings of IWLS'95{1}.

• The orders of the clusters for forward and backward image are calculated and stored. Also

stored is the schedule of variables for early quantification.

For forward and backward image computation the corresponding routines are called with

appropriate ordering of clusters and early quantification schedule.

그림 14 img directory reference

 Synopsis

img.h Methods for performing image computations

imgTfm.c Routines for image and preimage computations using transition function method

imgTfmBwd.c Routines for preimage computation using transition function method

imgTfmCache.c Routines for image cache in transition function method

imgTfmFwd.c Routines for image computation using transition function method

imgInt.h Internal declarations for img package

imgIwls95.c Routines for image computation using component transition relation approach described in

the proceedings of IWLS'95

imgLinear.c Routines for image computation using Linear Arrangement published in TACAS02

imgMlp.c Routines for image computation using MLP(Minimal Lifetime Permutation) published in

FMCAD00

imgMonolithic.c Routines for image computation using a monolithic transition relation

imgTfmUtil.c Routines for image computation using transition function method

imgUtil.c High-level routines to perform image computations

 21

imgHybrid.c Routines for hybrid image computation

2.13 io

Routines for reading and writing BLIF-MV files. Routines to test if a blif-mv file is consistent.

They are also responsible for setting several internal data structures. Here are the list of checks we

can do on an hsis network. For each model, we first check if there is no node labeled both as PI

and PS or both as PI and PO. Then, for each subcircuit in the model, the compatibllity of the

interface is verified namewise and rangewise. This is detailed below. Then, we verify that there is

no combinational cycle in any model. Furthermore, for each latch in the model, we make sure that

the input and the output of the latch are of the same type and that every latch has a reset table.

Finally, we check to see if each variable is an output of at most one table. As for the check to be

done for a subcircuit, we first check if the model to be instantiated is present in the hmanager.

Then, we test if all the formal variables in the subcircuit definition exist in the model and at the

same time they are of the same type of the corresponding actual variables. More thoroughly, we

have to check if a flattened network has no cycle, but it is not currently implemented.

그림 15 io directory reference

 22

 Synopsis

io.h Routines for reading and writing BLIF-MV files

ioCheck.c Routines to test if a blif-mv file is consistent

ioCmd.c Top-level routines for reading and writing files

ioInt.h Internal declarations of the I/O package

ioParse.c Functions used in parsing BLIF-MV files

ioReadBlifMv.c Routines related to reading in blif-mv files

ioTable.c Routines for generating the table data structure from textual information. Used in the parser

ioWriteBlif.c This file contains blifmv -> blif write routines

ioWriteBlifIo.c This file contains blifmv -> blif write routines that handle the functionality of files IO

ioWriteBlifMv.c Writes out a blif-mv file

ioWriteBlifUtil.c This file contains blifmv -> blif write routines, which perform miscellaneous lower-level

functions

ioWriteSmv.c Writes out an Smv file

aiger.c

aiger.h

2.14 ltl

그림 16 ltl directory reference

 23

 Synopsis

ltl.h Internal declarations

ltl.c LTL model checking

ltlAutomaton.c Translate LTL formula to the Buechi Automaton

ltlCompose.c Write the Buechi automaton into a file

ltlInt.h Internal declarations

ltlMinimize.c Buechi automaton minimization

ltlSet.c Set/Pair/Cover Manipulation functions used in the ltl package

ltlTableau.c Expand the LTL Formula by applying the Tableau Rules

ltlUtil.c Utilities for LTL model checker

2.15 maig

그림 17 maig directory reference

 Synopsis

maig.h multi-valued AND/INVERTER graph

maigUtil.c Utilities for Multi-Valued AndInv graph

maigInt.h Internal data structures of Multi-vlaued AND/INVERTER package

 24

2.16 mark

Data structures used in Markovian analysis

그림 18 mark directory reference

 Synopsis

mark.h Data structures used in Markovian analysis

markFPSolve.c This file contains functions that implement the fixed point method.

markGetScc.c Functions to compute terminal strongly connected components in a markov chain

markInProb.c Computation of transition probability matrix and convergence checks in markov analysis

markInt.h Data structures used in Markovian analysis

mark.c External procedures included in this module:

- Mark_FsmComputeStateProbs()

- Mark_ComputeStateProbsWithTr()

Internal procedures included in this module:

- MarkAverageBitChange()

2.17 mc

Fair CTL model checker and debugger. Works on a flattened network

 Synopsis

mc.h Fair CTL model checker and debugger

mcCmd.c Functions for CTL model checking commands

mcCover.c Functions for coverage estimation

mcDbg.c Debugger for Fair CTL models

mcDnC.c The Divide and Compose (D'n'C) Approach of SCC Enumeration

mcGFP.c Computation of greatest fixpoints

mcInt.h Internal declarations

mcMc.c Fair CTL model checker

mcSCC.c Computation of Fair Strongly Connected Components

mcUtil.c Utilities for Fair CTL model checker and debugger

mcVacuum.c Functions for vacuity detection

 25

그림 19 mc directory reference

2.18 mvf

This package is used to create and manipulate single output functions that take multiple

values, and are defined over multi-valued variables. Mathematically, such a function is described

as, f: Y1 x Y2 x ... x Yn –> Yn+1. Each Yi is a finite, ordered set; if Yi is of cardinality k, then the

elements of Yi are {0, 1, ..., k-1}. We use yi do denote a variable over Yi. If

A single MDD over variables y1,...,yn cannot be used to represent f, because an MDD can

only represent binary-valued functions, not multi-valued functions. Instead, to represent f, we use

 26

an array of MDDs, of length equal to the cardinality of Yn+1. Each MDD of this array is defined

over y1,...,yn. Furthermore, the minterms for which the ith MDD, fi, evaluates to one, are exactly

those minterms for which f evaluates to the ith member of Yn+1. If f is deterministic, then the

intersection of fi and fj, for i not equal to j, is empty. If f is completely specified, then the union of

the fi's is the tautology. The union of the fi's is referred to as the "domain" of the function.

그림 20 mvf directory reference

 Synopsis

mvf.h Creation and manipulation of MDD-based multi-valued functions

mvfInt.h Internal definitions for the mvf package

mvfMvf.c Routines to create, manipulate and free multi-valued functions

2.19 mvfaig

그림 21 mvfaig directory reference

 Synopsis

mvfaig.h Creation and manipulation of AndInv-based multi-valued functions

mvfaigInt.h Internal definitions for the mvf package using And/Inverter graph

mvfaigUtil.c Routines to create, manipulate and free multi-valued functions

 27

2.20 ntk

A network is a directed graph, where the vertices are nodes (of type Ntk_Node_t) and the

edges are stored as fanin and fanout arrays of each node. Each node has a single output, which

may fanout to multiple nodes. A node is one of 5 types. In addition, it may have one or more

optional attributes, respecting the following table:

type | attributes

---------------+---

 | primary latch data latch init constant

 | output input input

---------------+---

pseudo input | x x x

primary input | x x x

latch | x x

shadow |

combinational | x x x x

Legend:

 primary input: a node with no fanins that is a port of the network;

 does not have a table defining its function - it can

 take any value in its domain

 pseudo input: a node with no fanins, introduced to model

 nondeterminism; its table defines which values it can

 take

 latch: an edge triggered latch with data and initial inputs

 shadow: a node with no fanins and no fanouts; it serves as a

 "shadow" for a node; for example, a shadow node for a

 latch is used to store information about the next

 state variable; any node can have a shadow, except a

 shadow node

 combinational: a node that has a table and is not a primary or pseudo

 input

 primary output: a node that is a port of the network

 latch data input: a node driving the data input of a latch

 latch init input: a node driving the initial input of a latch

 constant: a combinational node with no fanins that can take

 exactly one value

An "x" in the table means that it's permissible for a node of the given type to have the

given attribute; the absence of an "x" means it's not permissible.

In addition, there are several derived attributes: all primary inputs, pseudo inputs, and

latches are "combinational inputs"; all latch data inputs, latch initial inputs, and primary outputs

are "combinational outputs"; all primary inputs and pseudo inputs are "inputs".

Each combinational node has a table defining the function of the node in terms of its

 28

immediate fanins. This function must be deterministic (i.e. for a given valuation of the fanins, the

function can assume at most one value) and completely specified (i.e. for a given valuation of the

fanins, the function can assume at least one value) in order to ensure correctness of verification

results downstream . (The exception is that pseudo inputs are nondeterministic.) The table may

have multiple output columns, so the node keeps an index giving the output column to which it

refers.

The ntk package contains facilities to create a network (Ntk_Network_t) from a hierarchical

network. In particular, it supports the concept of "actual names" and "formal names". Consider the

following hierarchical network:

그림 22 ntk directory reference

 Synopsis

ntk.h Flat network of multi-valued combinational nodes and latches

ntkFlt.c Routines for creating a network from a hierarchy manager

ntkGraph.c Routines related to the abstract graph of a network

ntkInt.h Internal declarations for the network package

ntkNode.c Routines to access the node data structure

ntkNtk.c Routines to access the network data structure

ntkSweep.c Utilities for Cleaning the Ntk_Network_t

ntkCmd.c Command interface to the ntk package

 29

2.21 ntm

Provides a routine to build the MVFs of the roots of an arbitrary region of a network, in

terms of the leaves of the region. The leaves can be treated as variables or as specific constants.

그림 23 ntm directory reference

 Synopsis

ntm.h Construction of MDDs from a flattened network

ntmInt.h Internal declarations

ntm.c Routines to build MDDs from a network

2.22 ntmaig

 Synopsis

ntmaig.h Construction of mAigs from a flattened network

ntmaigCmd.c Command interface for the Aig partition package

ntmaigInt.h Internal declarations

ntmaig.c Routines to build mAigs from a network

 30

그림 24 ntmaig directory reference

2.23 ord

The routines in this package relate to ordering MDD variables corresponding to the nodes of

a network. The enumerated type Ord_OrderType is used to specify to which set of nodes certain

ordering routines should be applied. The following matrix shows which node types are included in

each ordering type:

| Ord_OrderType

 node type | All InputAndLatch NextStateNode

----------------+---------------------------------------

primary input | x x

pseudo input | x x

latch | x x

shadow | x x x

combinational | x

In addition, the order type Partial can be used to specify an arbitrary subset of nodes.

There are various methods for ordering the roots of a network, and for ordering the nodes of

a network. These are explained in the documentation for the static_order command

 31

그림 25 ord directory reference

 Synopsis

ord.h Routines for ordering MDD variables of a flattened network

ordCmd.c Command interface to the ordering package

ordInt.h Internal declarations for the order package

ordIo.c Routines to read and write variable orderings

ordMain.c Routines for static ordering of MDD variables

ordNodes.c Routines to order the nodes in the TFI of the roots of a network

ordPerm.c Routines to find permutation on latches to minimize MDD size

ordRoots.c Routines to order the roots of the network

2.24 part

Once the description of a system has been read, and the ordering of the variables has been

assigned, the partition package creates an abstracted view of the system in which only

information in terms of MDDs is stored. The MDDs belong to the MDD manager of the system.

Different options may be considered when creating this abstracted view. If the system is described

as a network there are several options to create this partition. As a first choice, the system may be

considered as a set of functions representing the combinational outputs as functions of the

combinational inputs. In general, the latch functions may be specified as functions of any

intermediate variables. These intermediate variables are themselves functions of other variables,

and ultimately the dependency on the combinational inputs is achieved. The structure to

represent these arbitrary dependencies is a DAG. The combinational inputs of the network will be

represented as vertices. Every other function (either representing a latch or any other intermediate

node) is represented as a vertex with in-coming edges from the vertices representing the

 32

function's domain. Hence, the vertices representing the combinational inputs will not have any in-

coming edges, and conversely, the vertices representing the combinational outputs will not have

any fanout edges.

The partition may have two types of vertices, called single and clustered. Single vertices are

the ones that represent, for example, nodes in a network. Clustered vertices are used solely for

the purpose of grouping single vertices into disjoint sets. No clustered vertex can be member of a

clustered vertex, and every single vertex may be a member of a unique clustered vertex. The

edges of the graph are connecting only single vertices. Functions are provided to access the list of

vertices represented by a clustered vertex as well as for testing the type of a vertex.

A partition is the central input to the image computation package. However, it is important

to note that there is no network-specific information stored in the partition data structure itself.

Hence, it is possible that another application (i.e. besides the network application) could create a

partition, and use that partition as input to the image computation package.

그림 26 part directory reference

 33

 Synopsis

part.h Partition of a system and creation of MDDs

partFine.c Implements the partition of the network with respect to a list of nodes provided by the user

partFrontier.c Implements the partition of the network based on the strategy of creating a node whenever

the size of the BDD representing the functionality of the node increases the threshold value

partGroup.c Routines for grouping vertices

partInOut.c Implements the partition of a network considering only the functions at the combinational

outputs in terms of the combinational inputs

partInt.h Internal data type definitions and macros to handle the structures of the partition package

partPart.c Routines to initialize the command build_partition_mdds, create and delete internal data

structures of the partition, and print information about the partition

partPartial.c Implements the partition of the network with respect to a list of nodes provided by the user

partTotal.c Implements the partition of the network replicating exactly the network structure in the

partition graph

partBoundary.c Implements the partition of the network with respect to the nodes that comprise the

submodules boundaries

partCmd.c Command interface for the partition package

partCollapse.c Implements a procedure to collapse several internal vertices of a partition into a single one

2.25 puresat

Abstraction refinement for large scale invariant checking

그림 27 piresat directory reference

 Synopsis

 34

puresat.h

puresatAig.c

puresatArosat.c

puresatMain.c

puresatFlatIP.c

puresatAbRf.c

puresatIPRefine.c

puresatIPUtil.c

puresatMain.c

puresatRefine.c

puresatTFrame.c

puresatUtil.c

puresat.c

Abstraction refinement for large scale invariant checking

puresatInt.h Internal declarations

2.26 res

This package implements residue verification between two networks. The method used is

based on residue arithmetic and the Chinese Remainder theorem. Verification is performed by

interpreting the outputs of the circuits as integers and verifying the residues of the outputs with

respect to a set of moduli. The choice of moduli is directed by the Chinese Remainder Theorem in

order to prove equivalence of the two circuits. This method works well with multipliers and

possibly other arithmetic circuits (due to its dependence on residue arithmetic). Discretion

should be exercised in applying this method to general combinational circuits. Residue verification

is provided with vis-cu ONLY. It reads both blif and blif-mv files. However, it does NOT support

multi-valued variables. Residue verification is primarily for combinational verification, but may be

applied to sequential circuits with the same state encoding. The latch outputs are then considered

to be combinational inputs of the circuits and the latch inputs and reset are considered to be

combinational outputs of the circuits. This package provides some combinational verification also.

Some/all of the outputs of the circuit may be verified directly (without using residues). In using

both direct and residue verification, verification of arithmetic circuits may become easier.

 Synopsis

res.h Combinational verification by residue arithmetic

resCmd.c Implements the different commands related to the residue verification

resCompose.c This file contains all relevant procedures for the composition of the nodes of the circuit into

the residue Add

resInt.h Internal declarations of the residue package

resLayer.c This file is responsible for computing the "layers" in a circuit depending on the method

resRes.c Data manipulation routines of the Res_ResidueInfo structure

resSmartVarUse.c This file provides functions to handle Dd variables in the composition phase of the residue

verification

res.c The main file that incorporates procedures for residue verification

 35

그림 28 res directory reference

2.27 restr

This package provides the capability to restructure a state transition graph (STG).

 Synopsis

restr.h STG restructuring package

restrCProj.c This file contains functions that implement the STG restructuring based on compatible

projection

restrDebug.c Utility functions to aid in debugging

restrFaninout.c Routines in this file implement the Fanin and Fanin-Fanout oriented restructuring heuristics

restrHammingD.c The function in this file implements the Hamming distance heuristic to restructure the STG

restrInt.h Internal declarations for state transition graph (STG) restructuring package

restrRestructure.c This file contains a main procedure that restructures an STG and transforms it into a new

multilevel circuit

restrUtil.c Support functions used in the package

restrCmd.c Command interface for the restr package

 36

그림 29 restr directory reference

2.28 rst

This package provides the capability to restructure the user's hierarchy. Currently only

collapsing adjacent nodes is provided. Parititioning FSMs is expected to be provided in the future.

 Synopsis

rst.h Restructuring package for restructuring the hierarchy

rstGroup.c rst package partitioning code with user interface

rstInt.h Internal declarations

rst.c utilities for restructuring hierarchy

 37

그림 30 rst directory reference

2.29 rt

This file contains the functions for regression test. The command 'regression_test' will read a

description of the regression test to be performed from the argument file, and will then carry out

the test. Finally, it will produce a LaTeX file with a set of tables summarizing the results. The

regression_test command can be used to compare two different versions of vis, or two different

scripts on the same version of vis, or even two different scripts on two different versions of

vis. regression_test spawns the version(s) of vis to be used for the experiments as child

processes. It does no other computation except setting up the experiments, starting the

child processes, waiting for their termination, and collecting the results.

 Synopsis

rt.h Regression test

rtInt.h Internal declarations

rtMain.c Regression Test

 38

그림 31 rt directory reference

2.30 sat

그림 32 sat directory reference

 Synopsis

sat.h Internal data structures of the sat package

satCore.c Routines for UNSAT core generation,both CNF-based and Aig-based UNSAT core

generetions are available

satDebug.c Routines for various debug function

satDecision.c Routines for various decision heuristics

 39

satImplication.c Routines for BCP

satInc.c Routines for sat incremental function

satInt.h Internal data structures of the sat package

satInterface.c Routines for various decision heuristics

satMain.c Routines for sat main function

satUtil.c Routines for various utility function

satBDD.c Routines for using BDD

satConflict.c Routines for sat conflict analysism and unsat proof generation for both CNF format and

AIG format

2.31 sim

The sim package provides functions for simulation. It also provides the "simulate" command

in the VIS environment. The simulate command performs a simulation of a network or a part of a

network. sim conceives simulation through three operations:

1- Build simulation vectors.

2- Simulate.

3- Print the result.

Exported functions make it possible to build an internal data-structure, and perform the

three operations given above. Simulation vectors may be provided by the user. Using exported

functions, it is also possible to generate simulation vectors randomly or reading it from a file. Low

level functions are also available that evaluate, for example, a network node using a simulation

vector. An example of a simulation vectors file may be generated using the simulate command

with random-vectors-generation option, in VIS.

 Synopsis

sim.h Simulation of a flattened network

simInt.h sim package internal declarations file

simIo.c Routines to read and write simulation vectors

simMain.c simulation of a Network

simSim.c Routines to manipulate simstructure

simUtil.c Basic useful functions for the sim package

 40

그림 33 sim directory reference

2.32 spfd

This package implements wire removal and replacement based logic optimization for

combinational circuits mapped to FPGAs. SPFDs (see the reference below) are used to represent

flexibilities in the Boolean network. This package provides two commands: (1) spfd_pilo, a

placement independent logic optimization technique. 2. spfd_pdlo: A combined logic and

placement optimization technique. spfd_pdlo requires the package VPR.

 41

그림 34 spfd directory reference

 Synopsis

spfd.h SPFD-based wire removal and replacement algorithm for logic optimization of

combinational circuits mapped to FPGAs

spfdAPI.c Routines to read, delete and update data structures used in the package

spfdClean.c Routines to free memory when not needed

spfdCmd.c Interface functions for commands spfd_pilo and spfd_pdlo

spfdCommon.c Essential routines required during SPFD computation

spfdInt.h Internal data structures for the spfd package

spfdOpt.c Routines that implement spfd_pilo

spfdProg.c Routines that perform reprogramming of LUTs (nodes) in the circuit

spfdReg.c Routines to compute a cluster of nodes for optimization

spfdSpfd.c Routines to perform SPFD computation

spfdUtil.c Utility routines for the spfd package

2.33 tbl

External procedures included in this module: Synth_Init(), Synth_End()

Static procedures included in this module: CommandSynthesizeNetwork(), TimeOutHandle

 42

그림 35 synth directory reference

 Synopsis

synth.h Symbolic synthesis package

synthDiv.c Divisor functions

synthFactor.c Multilevel optimization functions

synthGen.c Generic multilevel factorization method

synthInt.h Internal declarations

synthOpt.c Multilevel optimization functions

synthSimple.c Simple factorization method

synthSynth.c Synthesis Algorithms

synthUtil.c Functions to get or to print some information

synthWrite.c Functions to write blif file and equation file

synth.c Commands for synthesize_network

synthCount.c Literal counting functions

 43

2.34 tbl

A Tbl_Table_t is a data structure that contains all the information found in the blif_mv tables

(refer to blif_mv document), and represents a multivalued function or group of functions. This can

be thought of as a table with inputs and outputs, and the entries in this table describe how the

inputs are related to the outputs. The entries in a table may be of two types: they are either a list

of ranges that contain values that an entry may take, or are set equal to some other entry in the

table. Notice that blif_mv files also have the complement construct, which is absent in the table

struct. There are functions for complementing, and canonicalizing a list of ranges

그림 36 tbl directory reference

 Synopsis

tbl.h Routines for manipulating a multi-valued relation representation

tblAigEntryUtil.c

tblAigUtil.c

tblEntryUtil.c This package describes functions used to manipulate the Tbl_Entry_t ,Tbl_Row_t and

Tbl_Range_t structs

tblIdentity.c Functions used to detect special types of table. Used, for instance, in network sweeping

tblInt.h Include the internals of the table package

tblSweep.c Functions to support network sweeping

tblTest.c This package is used to manipulate the table data structure

tblUtil.c This package is used to manipulate the table data structure

 44

2.35 truesim

Exported functions and data structures for the truesim package. This package provides

procedures to perform pattern based zero delay and levelized two-pass event-driven simulation of

circuits described in BLIF format. Pattern vectors to be simulated can either be provided or can be

generated using user-specified primary input probabilities. Only combinational circuits are

supported at this time

그림 37 truesim directory reference

 Synopsis

truesim.h Exported functions and data structures for the truesim package

truesimCmd.c Command interface for the truesim package

truesimInt.h Internal data structures for the truesim package

truesimMain.c Routines to perform full delay simulation

truesimSim.c Top-level routine to perform simulation

truesimUtil.c Utility functions for the truesim package

truesimZero.c Routines to perform zero-delay vector simulation

2.36 tst

 Synopsis

tst.h Test package illustrating VIS conventions

tst.c Test package initialization, ending, and the command test

tstInt.h Internal declarations

 45

그림 38 tst directory reference

2.37 var

This package contains the data structure for multi-valued variables. For each variable in a

BLIF-MV network, this structure is created. The information contained in this structure for a

variable is the name, the type (PI,PO,PS,NS etc), the range size, the list of symbolic value names if

any, and the encoding of a variable. Any variable can be categorized either to an enumerative

variable or a symbolic variable. Enumerative variables are variables which take values from [0,...,n-

1], where n is the range of the variable, while symbolic variables are variables which take symbolic

values (e.g., [red,blue,green]).

그림 39 var directory reference

 Synopsis

var.h Multi-valued variables

varInt.h Internal declarations for the multi-valued variable package

varVariable.c Routines to access the MV-variable data structure

 46

2.38 vm

그림 40 vm directory reference

 Synopsis

vm.h "Main" package of VIS ("vm" = VIS main)

vmInit.c Initializes and ends VIS

vmInt.h Internal declarations for the main package

vmMain.c Main VIS routine. Parses command line at invocation of VIS

vmVers.c Supplies the compile date and version information

