
Review of Review of Review of Review of
software testingsoftware testing

P David Coward

200911385 박기남200911385 박기남

200911425 조서경

Presenter : 200911426 조성완

200911427 조아라

IndexIndexIndexIndex

I. What is software testing?

II. Dimensions of testing strategies.

III Categories of testing techniquesIII. Categories of testing techniques.

IV. Summary of software testing

0. 0. IntroductionIntroduction

 Software testing arises from distrust in software
developed.

 Testing is followed by static and dynamic  Testing is followed by static and dynamic
analysis, and functional and structural testing
strategies.strategies.

 Testing techniq es are di ided from strategies Testing techniques are divided from strategies.

ⅠⅠ W What is hat is ⅠⅠ. W. What is hat is
Software testing?Software testing?

1. Definition of software testing
2. Motive for using software testingg g
3. Verification & Velidation
4. Functional & Nonfunctional testing
5. Aims of software testing5 g
6. Examples of software testing

 D fi iti f ft t ti D fi iti f ft t ti1. Definition of software testing1. Definition of software testing

 There is no agreed definition of testing.

 Checking software

- Software meets with
user requirements.

- Output values are - Output values are
based on specification.

 M ti f i ft t ti M ti f i ft t ti2. Motive for using software testing2. Motive for using software testing

 For next reasons, People feel the necessity of
software testing.

 Despite advances in formal method of  Despite advances in formal method of
specification and improved software creation
tools, there is no guarantees that the software tools, there is no guarantees that the software
produced meets its functional requirement.

 Software’s specification may not be correct.

 V ifi ti & V ifi ti & V lid tiV lid ti3. Verification & 3. Verification & VelidationVelidation

 Verification

- Is software being developed well?

f h f d l l- Correctness of the software development cycle.

h k h f f d l- Check the process of software development.

 V ifi ti & V ifi ti & V lid tiV lid ti3. Verification & 3. Verification & VelidationVelidation

 Velidation

- Is software developed well?

h k h f h- Checking the software against the requirements.

h k h l d f f- Check the result or output data of software.

 V ifi ti & V ifi ti & V lid tiV lid ti3. Verification & 3. Verification & VelidationVelidation

 Comparison of V & V (V model)

T l
Acceptance

test
Requirement

Analysis

Test plan

System testSpecification

Test case
design

Integration
testDesign Test design

Unit testCoding
Verification VelidationTest data Unit testCoding– By the person
– Focus on development cycle

– By the computer
– Focus on requirement

generation

4. Functional & nonfunctional testing4. Functional & nonfunctional testing4. Functional & nonfunctional testing4. Functional & nonfunctional testing

 Functional testing
- Checking whether output is correct.
- It is used when testing new program

or testing modified program
 Regression testing

- Alter the function of the software that were
intended to remain unchanged.
- But, implement the functions required by the
customer will not involve all requirements
placed upon a software system

4. Functional & nonfunctional testing4. Functional & nonfunctional testing

N f i l i

4. Functional & nonfunctional testing4. Functional & nonfunctional testing

 Nonfunctional testing
- For omitted requirements

Checking
- satisfies legal obligationsatisfies legal obligation
- performs within specified

response timep
- written in particular

house style
d d d- meets documents standards

5. Aims of software testing5. Aims of software testing5. Aims of software testing5. Aims of software testing

There is two camps of aims

 Find faults in the software

- Destructive process
- Because of the probing attention, this will be Because of the probing attention, this will be
more likely to uncover faults.

5. Aims of software testing5. Aims of software testing5. Aims of software testing5. Aims of software testing

 Demonstrate that there are no fault in the
software.

- Constructive process
h b l- Cause the tester to be gentle

- Have risks of missing inherent fault

6. Examples of software testing6. Examples of software testing6. Examples of software testing6. Examples of software testing

 NASA
- NASA established teams of software validators.

 Other large-software-development-organizations  Other large software development organizations
has established testing team, too.

 Not only in software organization,
b t also in other kinds of companiesbut also in other kinds of companies.

ⅡⅡ Dimensions of Dimensions of ⅡⅡ. . Dimensions of Dimensions of
testing strategiestesting strategiesg gg g

1 Functional-structural testing1. Functional structural testing
2. Static-dynamic testing

Di i f t ti t t iDi i f t ti t t iDimensions of testing strategiesDimensions of testing strategies

 The functional-structural dimension

- Functional testing
- Structural testing

 The static-dynamic dimension The static dynamic dimension

- Static testingStatic testing
- Dynamic testing

1. Functional1. Functional--structural testingstructural testing1. Functional1. Functional structural testingstructural testing

1-1. Functional testing

- Two main steps

Id tif C tIdentify
the function

Create
test data Testing

11--1. Functional testing1. Functional testing11 1. Functional testing1. Functional testing

 Black-box testing

- Based on requirement
(function specification, interfaces)

d d f f- Understanding of function
- Oracle is important

l f- Simulation software

Invisible!Invisible!

1. Functional1. Functional--structural testingstructural testing1. Functional1. Functional structural testingstructural testing

1-2. Structural testing

- Two scenarios

Execute program with test data.

• Most commonly casey

Compare with require function

• Less common
• Symbolic executiony
• Program providing

11--2. Structural testing2. Structural testing11 2. Structural testing2. Structural testing

Test dataTest data

Code

OutputOutput

11--2. Structural testing2. Structural testing11 2. Structural testing2. Structural testing

 White-box testing

- Based on implementation
(Structure of code)

- Check the detail designContents

Visible!Visible!

11--2. Structural testing2. Structural testing11 2. Structural testing2. Structural testing

 Trying to discover what is the minimum amount
of testing that is required to ensure a degree of
reliability.

- Statement testing
- Branch testing
- LCSAJs testing

(Linear Code Sequence And Jumps)

11--2. Structural testing2. Structural testing

Th b i h i

11 2. Structural testing2. Structural testing

 The best test is exhaustive test.
 But, there is two obstacles.

Th l b f ibl h- The large number of possible path.
- Exist of infeasible path.

 Island codes disturb metric of testing overage.
Island code- Island code
ᆞ Procedure that isn’t invoked.
ᆞ Caused by error in the invocation of a Caused by error in the invocation of a

required procedure.

1. Functional1. Functional--structural testingstructural testing1. Functional1. Functional structural testingstructural testing

 Functional vs Structural

Metaphor Base Testing tool TypeMetaphor Base Testing tool Type

Functional Black-box Requirement
- Function

specification
I t f

Indirect
- Interfaces

Structural White-box Implementation -Structure
of the code Direct

2. Static2. Static--dynamic testingdynamic testing2. Static2. Static dynamic testingdynamic testing

 Static testing
- Not involve the execution of software

- Program providing
b l- Symbolic execution

- Anomaly analysis

2. Static2. Static--dynamic testingdynamic testing2. Static2. Static dynamic testingdynamic testing

 Dynamic testing
- Require execution of software
- Use of probes
- Analysis routines

- It can be the bridge between
f l lfunctional & structural testing.

2. Static2. Static--dynamic testingdynamic testing2. Static2. Static dynamic testingdynamic testing

 Comparison static and dynamicp y

Program execution Testing tool

Static Needless - Symbolic values
- Input & output datas

ProbesDynamic Required - Probes
- Routines

ⅢⅢ Categories ofCategories ofⅢⅢ. . Categories ofCategories of
testing techniquestesting techniquesg qg q

1. Static-structural
2. Dynamic-functional
3. Dynamic-structural

0. Categories0. Categories0. Categories0. Categories

i h i di id d Testing techniques are divided
by the dimensions of testing strategies

Structural Functional

Static
- Symbolic execution
- Program providing

A l l i- Anomaly analysis

- Computation testing
- Domain testing

- Random testing
- Domain testing

Dynamic
Domain testing

- Automatic path-based test
- data generation
- Mutation analysis

Domain testing
- Cause-effect graphing
- Adaptive perturbation testing

y

2. Static2. Static--structuralstructural2. Static2. Static structuralstructural

 Testing detailed design (no execution)
 Symbolic executiony

- Actual data values are replaced by symbolic.
- Difficulty : handling of loopsy g p
- Flow-graph

ex) if(u > 0.5) { y = 1; }y
else { y = 0; }

2. Static2. Static--structuralstructural2. Static2. Static structuralstructural

 Partition analysis

Subdomain Execution

Identify

Subdo a ecut o

Input
DataDomain

2. Static2. Static--structuralstructural2. Static2. Static structuralstructural

 Program providing
- Check input and output data
- Mathmatical testing

Insert

Construct Examine

Insert
mathematical

assertion
at the

start & end

Compare with
start & end
assertion

Confirm the
end assertion

start & end
of block

2. Static2. Static--structuralstructural2. Static2. Static structuralstructural

 Anomaly analysis
- Checking language syntax
- Search for anomalies

bl dex) 1. Unexecutable code
2. Array bounds

l d l3. Failed initializing
4. Unused variables

il d i l5. Failed in loops

2. Dynamic2. Dynamic--functionalfunctional2. Dynamic2. Dynamic functionalfunctional

 Execute test cases (no detailed design)g

 Domain testing Domain testing
- Test case is based on

an informal classification of the requirementsan informal classification of the requirements.
- Execute test case and detect fault.

2. Dynamic2. Dynamic--functionalfunctional2. Dynamic2. Dynamic functionalfunctional

 Random testing
- Test data is produced without reference

to the code or the specification.
- Problem : No guarantee to complete

f hcoverage of the program.
⇒ Little practical …

 Adaptive perturbation testing
- Test data is based on effectiveness.
- Cornerstone : Using executable assertions
- Maximize the number of assertion violations.

2. Dynamic2. Dynamic--functionalfunctional2. Dynamic2. Dynamic functionalfunctional

 Cause-effect graphing
- Test data is a combinational input.
- Combinatorial logic network
- Use Boolean logical operators.

d f ll b f f l- To identify a small number of useful test cases.

Divide
specification

into
Identify
causes & Construct a Annotate the Convert graph

to limited-into
workable

pieces

causes &
effects graph graph to limited-

entry decision

3. Dynamic3. Dynamic--structuralstructural3. Dynamic3. Dynamic structuralstructural

 Domain and computation testing
- Using structure and select paths

which are identify domain.

Domain
ErrorErrorWrong path!

Test case

Computation Error Computation
ErrorCorrect path!

3. Dynamic3. Dynamic--structuralstructural3. Dynamic3. Dynamic structuralstructural

 Automatic test data generation
- Test data is generated from a syntactic

description of the test data expressed in.
- Repeated use of this method

d h d h h f dmay produce the test data that has confidence.
 Mutation analysisy

- It doesn’t create test data
nor demonstrate that the program is correct.

- Check the quality of a set of test data.
- To create high quality test data.

ⅣⅣ. . SummarySummary

SSSummarySummary

 Software testing gives us confidence.

 Testing has 2 strategies.

 From the strategies, testing techniques are
di id d t 4 t idivided to 4 categories.

 Thorough testing is a necessary for software
development.

