Prototyping: alternative systems
development methodology

J M Carey

Prototyping has become a popular alternative to traditional
systems development methodologies. The paper explores the vari-
ous definitions of prototyping to determine its advantages and
disadvantages and to present a systematic methodology for incor-
parating the prototyping process into the existing system develop-
ment process within an organization. In addition, one negative
and one positive case study of prototyping within industrial set-
tings is included.

system development methodologies, prototyping, software life-
cycle

In recent years, use of prototyping has increased drama-
tically for both the requirements definition phase of the
systems development life-cycle and rapid building of
end-user systems'. The increase has been primarily due
to the advent of fourth-generation language (4GL) appli-
cation generators.

A study of Texas-based computer facilities showed
that prototyping was more widely used than almost any
offline, structured, software-development tools, such as
dataflow diagrams and decision tables'.

This paper explores the definition of prototyping, the
advantages and disadvantages of using this technique,
and how to determine when a prototyping approach is
appropriate.

CONSENSUS DEFINITION

If various analysts and programmers were asked to
define prototyping, the responses would vary considera-
bly, depending on experience and training. Prototyping
has taken on a variety of meanings and uses and has been
variously defined as follows:

‘a strategy for determining requirements wherein user
needs are extracted, presented, and defined by build-
ing a working model of the ultimate system — quickly
and in context’ (p 25)*

‘Prototyping is based on building a model of the

Arizona State University — West Campus, P.O. Box 37100, Phoenix,
AZ 85069-7100, USA.

Paper submitted: 19 April 1989.
Revised version received: 12 September 1989.

159

system to be developed. The initial model should
include the major program modules, the data base,
screens, reports and inputs and outputs that the
system will use for communicating with other, inter-
face systems’ (p 69)°

‘working models used to check accuracy of designs
before committing to full-scale production’ (p 79)*

“The idea behind prototyping is to include users in the
development cycle’ (p 93)°

What do these definitions have in common? First, proto-
typing is seen as a model of the final system, much like in
the automobile industry where prototype or model cars
are built and tested before full-scale production is
attempted. In prototyping a software system, only parts
of the system are developed, with a key emphasis on the
user interfaces, such as menus, screens, reports, and
source documents. The prototype is then a shell of the
final system with no calculations and data behind the
interfaces. The final system is either built from scratch
using the prototype as a model or evolved from the
prototype.

Second, the emphasis is on user involvement in the
software development process. In the traditional soft-
ware development life-cycle, communication between
analysts and users occurs early in the cycle to determine
information needs, then the analysts work, in isolation,
to develop the system and seldom interact with the users
until system delivery and production. As users have little
input into the development process, the resultant system
is often dissatisfactory and difficult to learn and use.
Prototyping provides a ‘hands-on’ communication tool
to allow the analyst to determine user needs and ensure
ongoing communication throughout the development
process, thus ensuring that the system is the ‘right’ one
for the user.

Third, prototyping produces an information system
faster than using the traditional life-cycle approach.
When users are frustrated by the development backlog
that exists in most organizations, speed of delivery can be
a great selling point. This is often called ‘rapid prototyp-
ing’ by proponents and ‘guick and dirty’ by opponents.

Taking these three underlying ideas and incorporating
them into one gives the following consensus definition:

‘Prototyping’ is the process of quickly building a
model of the final software system, which is used

Reprinted from Information and Software Technology, Vol. 32, No. 2, March 1990, pp. 119-126.



primarily as a communication tool to assess and meet
the information needs of the user.

RATIONALE FOR PROTOTYPING

The traditional software development approach has
several inherent problems, which prototyping attempts
to address. These problems include the following?¢:

e Users seldom have clear, concise understanding of
their informational needs. Therefore, they cannot
prespecify the requirements. Once they begin to use a
system, however, it is clear to them where the problems
lie.

o The traditional function specification is a narrative
description of an information system that is technical
and time consuming to read. Static graphic techniques
(such as datafiow diagrams, and data dictionary
entries found in the structured approach) once
thought to be the solution to communication cannot
demonstrate the workings of a live dynamic system’.

o The larger the development team, including user rep-
resentatives, the more difficult communication
becomes®. Semantic barriers and lack of physical pro-
ximity and time inhibit the ability of all members of
the team to have a common understanding of the
system being developed.

e Even if systems developed in the traditional manner
function correctly, they may be difficult to learn and
use.

« Both traditional and structured approaches emphasize
documentation, which is time consuming and as the
system changes may not be accurate®.

o Systems being developed today are more complex,
have a larger mission, and require many months to
complete. The traditional approach has not served to
shorten delivery time, in fact it may unduly lengthen
the time required due to the emphasis on documen-
tation”.

o Because of the large number of people/months
involved and time-consuming methods, traditional
approaches not only seem to deliver late systems that
do not please the user, they are also costly.

« Most large companies have a long backlog of projects
awaiting initiation, while the users who requested
them are frustrated, disillusioned, and ready to revolt.

All of these préblems suggest that some revolutionary
technique is needed. Prototyping is one technique that
attempts to address these problems and provide possible
solutions.

PROTOTYPING ENVIRONMENTS

There are two major types of prototyping environ-
ments*!%, One is a complete and integrated application-
generator environment or automated development
environment (ADE), which can produce quick, inte-

160

grated menus, reports, and screens and is tied to a data-
base. Examples are R:base 5000 or System V for the
microcomputer and NOMAD?2 for the mainframe.

A prototyping toolkit comprises the other environ-
ment. The toolkit is a collection of unintegrated tools
that aid the rapid building of the separate pieces of a
system, such as screen painters, data dictionaries, and
report generators. Together, these tools are often
referred to as analysts’ or programmers’ ‘workbench’.

The following ‘workbench’ tools can aid the prototyp-
ing process:

text editors

screen generators

report generators

relational databases
fourth-generation languages (4GLs)
spreadsheets

data dictionaries coupled to database management
systems

ad hoc query languages

security

statistical packages

back-up routines

documentation generators

online help

interactive testing system

If purchased separately, these tools are initially expensive
when compared with the traditional method of coding in
a third-generation language (3GL) such as COBOL. Also,
before jumping into prototyping, a training period for
both development team and users is required.

Acquiring the tools or environment is just the first
step. Once the environment for building a prototype has
been created and staff and users thoroughly trained in
the use of prototyping tools, a systematic methodology
should be adopted that is tailored to the specific organi-
zation and then followed to ensure that the system that
results from the prototyping technique is both usable and
correct. All too often, companies purchase prototyping
packages and jump into prototyping without trying to
determine when and how to use the technique.

The following five steps are suggested by Klinger,
manager of laboratory systems and programming at
Ortho Pharmaceutical Corporation, as a successful
approach to the use of prototyping:

o Assess each application individually. Would prototyp-
ing provide gains?

« Look at the environment and then develop and docu-
ment a formal prototyping life-cycle that fits it.

» Acquire appropriate software tools and train the staff.

» Decide how the software development process will be
managed and controlled.

o Train end-users in the procedures that will be followed
during the prototyping life-cycle.



ITERATIVE (TYPE I) VERSUS
THROWAWAY (TYPE II) PROTOTYPING

One confusion in defining prototyping arises from the
existence of two distinct types of prototyping that are
used by various companies. These two basic approaches
to prototyping are iterative and throwaway. The iterative
approach (Type I) uses the prototype as the final system
after a series of evolutionary changes based on user feed-
back. The throwaway approach (Type II) uses the proto-
type built in a 4GL as a model for the final system, with
the final system coded in a 3GL.

In the Type I (iterative) approach, the life-cycle con-
sists of the following stages®:

training

project planning
rapid analysis
database development
prototype iteration
modelling

detailed design
implementation
maintenance

The inclusion of training and project planning is unique.
These stages are seldom mentioned in the traditional life-
cycle. The modelling stage is also unique and important.
It is at this stage that the prototype system is tested
through benchmarking to make sure it performs within
acceptable standards. Possible replacement code may be
needed at bottlenecks in the prototype. Sometimes 3GL
code may be substituted for any original 4GL that has
been determined as inefficient. Figure 1 shows the system
development life-cycle incorporating Type I prototyping.

In the Type II (throwaway) approach, some iteration
occurs and the steps of analysis, design, coding, testing,
and modification may be repeated many times until all of
the users’ requirements are identified and met. Once the
prototyping phase is complete, then the prototype serves
as a model for final production system, but is discarded
at the project delivery®. The throwaway prototyping
approach generally adheres to the traditional life-cycle
once the prototype has been developed. Figure 2 illus-
trates the system development life-cycle incorporating
the Type II prototyping technique.

ADVANTAGES OF PROTOTYPING

Prototyping is being used in industry with varying
degrees of success. Proponents of prototyping cite the
following positive attributes:

o Systems can be developed much faster''.

o Systems are easier for end-users to learn and use.

e Programming and analysis effort is much less (less
humanpower needed).

« Development backlogs can be decreased'?.

o Prototyping facilitates end-user involvement.

o System implementation is easier because users know
what to expect.

16l

raining users|
andstaff in
prototyping

Requirements
definition

Project
planning

Rapid
analysis

Database
design

Design
prototypin

Generate
prototype

Test
prototype

Acceptable
?

Implement
system

Maintain
system

Figure 1. System development life-cycle using Type I (iter-
ative) prototyping

« Prototyping enhances user/analyst communication.

o User requirements are easier to determine.

¢ Development costs are reduced.

o The resultant system is the ‘right’ system and needs
little changing.

All of these positive attributes make prototyping sound
like the system development dream, like the answer to all
analyst’s and user’s problems. Indeed, many organiza-
tions have adapted some use of prototyping within their
development life-cycle. However, there is a downside to
prototyping.

DISADVANTAGES OF PROTOTYPING

Undue user expectations® The ability of the systems
group to develop a prototype so quickly may raise undue
expectations on the part of the user. They see the shell
and may not understand that it is not the finished system.
They may have been waiting for this system for months
or even years and are so anxious to get something in



place that being so close and yet so far may frustrate
them even more.

Inconsistencies between prototype and final system If the
prototype is a throwaway type, the end system may not
be exactly like the prototype. In other words, what the
user sees may not be what the user gets. It is up to the
analyst to communicate any differences between the pro-
totype and the end system,; if the user is forewarned, the
negative reaction may be ameliorated. It is advisable to
ensure that the resultant system be as close to the proto-
type as possible to avoid this potential problem.
Encouragement of end-user computing The availability
of prototyping software both in the organization and on
the general market may encourage end-users to begin to
develop their own systems when their needs are not being
met by data-processing staff. While end-user involve-
ment in system development is positive, end-user com-
puting (development of systems by end-users) may have

Definition
réquirements

Analysis

Design
prototype

Code
prototype

Test
prototype

Test final
system

Implement
final system

Maintain
final system

Figure 2. Traditional system development life-cycle with
Type II (throwaway) prototyping

162

some negative ramifications for system integration and
database integrity.

Final system inefficiencies’ Large, complex systems
that require voluminous numbers of transactions may
not be good candidates for the iterative prototyping
technique. 4GLs have a reputation for generating less
than optimal code in terms of efficiency and throughput.
Care must be taken to predetermine whether the new
system should be written with an application generator/
prototyping tool or prototyped in a 4GL and then coded
in a 3GL for maximum efficiency. A discussion of how to
make these determinations is included in the next section.
Lack of attention to good human factors® The use of
application generators as prototyping tools does not
ensure that the resultant systems will adhere to human-
factors guidelines. In fact, many application generators
have rather inflexible screen and menu formats, which
often inhibit the use of good human-factors techniques
unless additional background code is written (defeating
the purpose of the application generator).

Inattention to proper analysis Because prototyping
application generators are relatively easy to use and
produce quick results, analysts are tempted to plunge
into prototyping before sufficient analysis has taken
place. This may result in a system that looks good, with
adequate user interfaces, but that is not truly functional.
This is how the reputation of ‘quick and dirty’ proto-
types came about. To avoid this pitfall, a well defined
methodology that stipulates the stages of prototyping is
necessary.

DETERMINATION OF WHEN TO
PROTOTYPE

Some form of prototyping may be used in the develop-
ment of all systems from large and complex to small and
simple. Determination of whether to use the iterative
prototyping technique, which will evolve into the final
system, or the throwaway type, which may be used pri-
marily to model the user interfaces, however, is depen-
dent on several variables.

If the system in question has the following characteris-
tics, it may be a prime candidate for iterative prototyp-
ing3s;

is dynamic (always changing)

is transaction-processing based

contains extensive user dialogues

is small versus large

is well defined

is online

‘1s’ the business (i.e., billing, record management, tran-
saction-driven, predetermined structure)

On the other hand, if the system exhibits the following
characteristics, iterative prototyping is unlikely to
enhance the final system?$;

e is stable
o is decision-support based



contains much ad hoc retrieval and reporting

is of no predictable form

is ill defined

is batch

makes little use of user dialogues

is large and complex

is real-time

does extensive number crunching

is ‘about’ the business rather than directly involved in
transaction processing (i.e., decision support and
expert systems)

METHODOLOGY

Type 1 or Type II prototyping can be effectively used
when developing information systems; the key to success
is carefully determining which prototype type to use and
then following a well defined methodology.

The methodology should include thorough require-
ments definition and design stages before any prototyp-
ing is attempted. The prototype should then be defined,
coded, tested, and used to refine the requirements and
design and put to use as a Type I or Type II prototype.
During the refinement process, user comments and res-
ponses can be solicited and used to alter any unsatisfac-
tory portions of the prototype. Once the user(s) and
analyst are satisfied with the prototype, then the proto-
type can either be retained and expanded to become the
final system or used as a model for the final system that is
developed in a 3GL.

There are four phases that are inherent in the develop-
ment and completion of a prototype'®.

Determination of key aspects of system to be prototyped
The three main areas that are often prototyped include
the user interface, uncertain or vague system functions,
and time and memory requirements. Any or all three of
these aspects can be prototyped.

User interface The most common area to be proto-
typed. Many prototyping tools are specifically aimed at
rapid development of menus, screens, and reports. This
is the aspect that the user must understand and accept for
the system to be successful.

Uncertain system functions Often, the development of a
new system includes some functional processing that
may not be well understood by any team members. This
uncertain area is a probable candidate for prototyping.
The development of a working model allows the team to
make sure that the solution they are proposing will
indeed satisfy the requirements and perform effectively.
The involvement of the user will not be as heavy for this
type of prototype as for the user interface. The user may
not fully understand the calculations and output. The
user may be able to provide both test input and output
data, however, to verify the model.

Time and memory requirements The exercise of these
aspects may be more appropriately termed a simulation
instead of a prototype. Many systems may be character-
ized by huge volumes of transactions and data manipula-
tions. Standards for interactive respomse times and

163

memory use can be established, and the prototype/simu-
lation is exercised to ensure that the system can accom-
plish the functional tasks within the standards range.

Building the prototype

Many tools are available for building prototypes, as
already mentioned. The prototype is initially built quite
rapidly using one or more of the prototyping tools.

Testing the prototype
The prototype is tested and debugged based on user and
performance feedback.

Using the prototype as a model
The prototype is used as a model for the final system
(Type I1) or as the base for the final system (Type I).

Adherence to a strict methodology will help to ensure the
success of the prototyping approach and will combat the
‘quick and dirty’ system development that sometimes
results from prototyping in a haphazard manner.

INCORPORATING HUMAN-FACTORS
GUIDELINES INTO PROTOTYPING

Even though prototyping provides an excellent method
of analyst/user communication, there is nothing inherent
in the prototyping tools to ensure adherence to good
human-factors guidelines. Therefore, analyst/program-
mers should have additional training in this critical area.
Human factors in systems and the issue of ‘user friendli-
ness’ or ‘usability’ has been recognised recently as a
determinant of system success. Just because a system is
technically sound does not mean that it will be easy to
learn and use. The following human-factors guidelines'®
should be adhered to as part of the system design phase.
Know your users Users today range from novice to
expert. There are many variables that can help profile
users, including previous exposure to computers, the
nature of the task they are attempting to perform on the
system, level of training, how often they use the system in
question, level in the organization, amount of depen-
dency on the computer, etc. One of the first tasks of the
analyst should be to profile the user population.

Use selection not entry Whenever possible, allow the
user to select information from possible options on the
screen rather than require the user to remember what to
do next. Humans forget and have enough task variables
in their short-term memory to worry about without hav-
ing to memorize how to get the system to function. The
only problem with selection not entry is that it may slow
up the experienced user. In order not to frustrate this
type of user, program selections to accept multiple key-
strokes that will allow the experienced user to sidestep
the selection process.

Make the system behave predictably Consistent design
of function keys and options will lead to ease of learning
and use. Switching and interchanging will lead to frust-
ration and abandonment of the system.



Make the system as unobtrusive as possible The focus of
any computer session should be on the work task rather
than on the system itself. Some aspects of the interface,
such as blinking, reverse video, colour use, and audibles
can be distracting rather than meaningful, especially
when the user is doing routine data entry and has to be
involved with the system on an extended daily basis.
These attention-getting devices may be helpful as ‘train-
ing wheels’ during the learning process, but probably
should be removed once the user is ‘up’ on the system.,
Use display inertia when carrying out user requests The
display should change as little as possible. This helps to
prevent user distraction.

Conserve muscle power A single keystroke or de-
pression of a function key is usually faster and less cum-
bersome than multiple keystrokes, particularly for the
intermittent user who is not a proficient typist.

Use meaningful error messages If the user makes a mis-
take, advise on what the mistake was and how to correct
it. Avoid negative, patronizing messages. Simply state
the problem and how to correct it.

Allow for reversing of actions Protect the users from the
system and the system from the users. Create a suspense
file that can be altered and verified before the database is
altered; this will help to ensure database integrity. Allow
failsafe exits from the system at any time.

This list is not all inclusive, of course. There are many
other sources for user-interface design guidelines'’,
Incorporating these guidelines into interface designs and
using prototypes to communicate user requirements will
help to ensure system success.

TWO CASE STUDIES WITH
PROTOTYPING

Case 1: New Jersey Division of Motor
Vehicles'4

From 1983 to 1985, the State of New Jersey Division of
Motor Vehicles contracted Price Waterhouse and Com-
pany to build its primary information system. A new
4GL named Ideal from Applied Data Research (ADR)
Inc. was used to develop the system. When the system
was delivered, the response times were so slow that the
backlogs generated from using the system resulted in
thousands of motorists driving with invalid registrations
or licences. Overtime pay to employees amounted to
hundreds of thousands of dollars. In short, at delivery
time, the system was declared a total disaster.

Why was Ideal chosen as the language for this deve-
lopment project? First, time pressures dictated speedy
completion of the project and, second, the Systems and
Communications (SAC) Division of the State of New
Jersey had already acquired ADR’s Datacom/DB, which
supported Ideal as a 4GL. The decision was made by
Price Waterhouse to use Ideal, against the recommenda-
tions of several members of the SAC.

Robert Moybohm, the SAC’s deputy director, had

164

earlier evaluated Ideal for possible use in other, smaller
projects and determined:

o Ideal would not be able to handle the development of
large, online systems. He ran some benchmark tests
against COBOL programs and Ideal ran three times
slower on simple processing.

o Ideal did not offer index processing, a performance-
related feature that had been the initial reason that
SAC purchased the Datacom/DB system in the first
place.

¢ Ideal did not allow computer-to-computer interfacing.
The large system would need to interface with 59 other
computers. This fact alone should have precluded the
selection of Ideal.

Why did Price Waterhouse choose Ideal? What went
wrong? From the beginning, poor decisions were made
about the system development process. Ideal was a
brand-new product and was not well tested. The develop-
ment staff had no experience using any 4GL and con-
siderable time was spent learning and making mistakes.
All along the development cycle, it became apparent that
the system was not going to meet performance require-
ments, yet no one was able to stop the process and
change to a 3GL or determine how to combat the perfor-
mance problems. It seems that one of the driving forces
was the fact that the development team was locked into a
fixed-cost contract and delivery date and that every
month after deadline would incur a stiff financial
penalty. So a decision was made to deliver a nonperform-
ing system within the deadline rather than a late, but
functional, one.

After failed implementation of the new system and the
resultant flurry of irate users died down, an attempt was
made to rectify the problem. It was determined that only
about 58 of the 800 program modules needed to be
converted to COBOL to meet acceptable, response-time
criteria. Eight modules were responsible for the nightly
batch updates. The other 50 modules were online pro-
grams that were handling 85% of the system’s transac-
tion volume. It was not merely a simple line-by-line con-
version; many modules had to be redesigned to achieve
performance requirements.

The impact of a failed system on the motorists of New
Jersey could have been avoided by running the old
system in parallel with the new system until the problems
were rectified. Instead, due primarily to costs and inade-
quate hardware resources, direct cutover implementation
was used as a strategy. Consequently, the failure of the
new systern was evident to everyone in the state of New
Jersey, not just to internal staff.

Was Type I (iterative) prototyping with a 4GL the
wrong choice for the New Jersey Division of Motor
Vehicles? Given the volume of transactions, and the
development team’s inexperience, the answer must be
yes. A more effective approach would have been to use
the Type II (throwaway) approach, using the 4GL to
model the system, rather than use the Type I (iterative)
approach to develop the end system.



Case 2: Town and Country Credit Line (TCCL)

In early 1988, Town and Country Credit Line (TCCL)
decided to develop a system to enhance their competitive
advantage over other banking cards. TCCL has long
seen itself as the leader in banking card technology. (The
actual nature of the system is proprietary at this time and
the name of the company has been changed.) TCCL
decided to explore the costs and benefits of using CASE
technology to enhance delivery time for new systems.
They chose a service request system as an eight-week
pilot project to accomplish this purpose. They hired out-
side programmer/consultants who had experience in the
use of CASE technology and purchased IEF (Infor-
mation Engineering Facility) from Texas Instruments.

The decision to develop the service request system as a
pilot was based on the following:

o the estimated short time required to deliver this pro-
duct to the user community (it was perceived to be a
system with a fairly narrow scope)

« the time the user community had been promised the
system with no delivery

o it was felt that this system would give the development
team the ‘biggest bang for the dollar’ (quote from
project manager)

e it was felt that this system would provide the user
community with a system that would dramatically
enhance productivity while simplifying complex
choices

Why did they not just use traditional methods to develop
this system? The system had features that they felt would
be very difficult to design and produce using traditional
methods. These features were interprocedure communi-
cation and linking of procedures.

Because CASE technology was new to the organiza-
tion, the pilot project would additionally serve to provide
a knowledge base within the team to make accurate
estimates for projects that use the CASE tool, and give
each team member an opportunity to gain ‘hands-on’
experience with all phases of the CASE tool, and in
doing so provide understanding of the limitations and
capabilities of the CASE tool.

Two consultants were hired to provide support during
the pilot project as the team had no experience with IEF.
One consultant provided guidance on the methodology
and project management, the other on IEF itself.

Training of the resident staff members was limited. At
the beginning of the pilot project, only two team
members out of nine had any training beyond Business
Area Analysis and Business System Design. No team
members had any training or experience with IEF techni-
cal design and construction. One team member had no
training in CASE and IEF at all.

The system was developed by breaking it into its logi-
cal business components and then distributing one task
to each group. The system was developed within the
eight-week deadline and performs the required tasks effi-
ciently and effectively with user acceptance. Two
problems were encountered during the development pro-

165

cess. One was related to the CASE technology and the
other to the nature of the system. As the CASE techno-
logy was new to the organization, a learning curve was
encountered. The competence of the team and a willing-
ness to work additional hours helped to overcome this
problem. The other problem was a lack of communica-
tion between groups. The groups sometimes went off on
inconsistent tangents and some work had to be redone.
Once the product is familiar to the team, and less time is
spent on learning IEF, scheduled full-team meetings
could alleviate this problem.

1EF divides the development process into seven steps:

o ISP (Information Strategy Planning). Allows identifi-
cation of areas of concern and establishment of direc-
tion.

« BAA (Business Area Analysis). Areas of concern are
analysed for entity relationship and process depen-
dency.

e BSD (Business System Design). The processes are
packaged into procedures that are user interactive,

e TD (Technical Design). The conversion of BAA/BSD
designs into specific database tables (such as DB2),
CICS transactions, and COBOL II code.

e Construction. The generation of source and execu-
table code and database definition and access state-
ments.

o Transition. Loading data into the databases, determi-
nation of conversion strategies.

e Production. Actual implementation and ongoing use
of the system.

Throughout these phases, testing also occurs. Unit or
program testing is performed by individual team
members. System testing occurs when the entire system is
operational. User acceptance testing occurs at various
points in the development process.

Some problems occurred with the interfaces between
systems. Once these problems were solved, the end
system performed adequately in terms of efficiency and
effectiveness measures. The users were pleased with the
system and it is currently functional.

Why was this prototyping effort successful, whereas
the effort made by the New Jersey Division of Motor
Vehicles unsuccessful? One of the main advantages is five
years of advancement in prototyping tools. Ideal is less
integrated and much less sophisticated than IEF. Also
TCCL has had a chance to learn from other companies’
mistakes. As prototyping software tools become more
and more sophisticated, the inefficiencies will be reduced
dramatically.

SUMMARY

Prototyping is the process of quickly building a model of
the final software system, which is used primarily as a
communication tool to assess and meet the information
needs of the user.

Prototyping came about with the advent of 4GLs,
which enabled application or code generation. The rea-



sons for the success of prototyping arise from the
problems encountered in the use of the traditional deve-
lopment of software systems using 3GLs.

Prototyping environments are divided into two major
types: complete application generator environments and
toolkit or ‘workbench’ environments.

There are two major types of prototyping approaches:
iterative (Type I) and throwaway (Type II). In the itera-
tive approach, the prototype is changed and modified
according to user requirements until the prototype
evolves into the final system. In the throwaway
approach, the prototype serves as a model for the final
system, which is eventually coded in a 3GL or procedural
language.

Some advantages of prototyping include: faster deve-
lopment time, easier end use and learning, less human-
power to develop systems, decreased backlogs, and
enhanced user/analyst communication. Some disadvan-
tages of prototyping include: the fostering of undue
expectations on the part of the user, what the user sees
may not be what the user gets, and availability of appli-
cation-generator software may encourage end-user com-
puting.

Not all systems are good candidates for the prototyp-
ing approach. Care should be taken to determine
whether the system in question exhibits characteristics
that make prototyping a viable option.

No current prototyping tools ensure that good
human-factors guidelines will be exhibited in the final
system. Analysts should be aware of these guidelines and
build systems that adhere to them, regardless of the use
of prototyping tools.

Prototyping is a powerful and widely used approach to
system development. Systems built with the use of proto-
typing can be highly successful if a strict methodology is
adhered to and thorough analysis and requirements defi-
nition takes place before prototyping is attempted.

REFERENCES

1 Carey, J M and McLeod, Jr, R ‘Use of system develo-
ment methodology and tools’ J. Syst. Manage. Vol
39 No 3 (1987) pp 30-35

2 Boar, B ‘Application prototyping: a life cycle
perspective’ J. Syst. Manage. Vol 37 (1986) pp 25-31

3 Lantz, K ‘The prototyping methodology: designing

166

right the first time’ Computerworld Vol 20 (1986) pp
69-74

4 Staff ‘The next generation’ Banker Vol 136 (1986) pp
79-81

§ Stahl, B ‘The trouble with application generators’
Datamation Vol 32 (1986) pp 93-94

6 Klinger, D E ‘Rapid prototyping revisited’ Datama-
tion Vol 32 (1986) pp 131-132

7 Yourdon, E Managing the structured techniques Your-
don Press, New York, NY, USA (1976)

8 Brooks, F P ‘The mythical man-month’ (chapter 2) in
Brooks, F P (ed) The mythical man-month essays on
software engineering Addison-Wesley, Reading, MA,
USA (1979) pp 11-26

9 Boehm, B W ‘Structured programming: problems,
pitfalls, and payoffs® TRW Software Series TRW-SS-
76-06 TRW Defence Systems, Redondo Beach, CA,
USA (1976)

10 Sprague, R H and McNurlin, B C Information systems
management in practice Prentice Hall, Englewood
Cliffs, NJ, USA (1986)

11 Boehm, B W /EEE Trans. Soft. Eng. (1984)

12 Goyette, R ‘Fourth generation systems soothe end
user unrest’ Data Manage. Vol 24 (1986) pp 30-32

13 Kull, D ‘Designs on development’ Computer
Decisions Vol 17 (1985) pp 86-88

14 Kull, D ‘Anatomy of a 4GL disaster’ Computer
Decisions Vol 18 (1986) pp 58-65

15 Harrison, T S ‘Techniques and issues in rapid proto-
typing’ J. Syst. Manage. Vol 36 (1985) pp 8-13

16 Sena, J A and Smith, M L ‘Applying software engi-
neering principles to the user application interface’
(chapter 6) in Carey, § M (ed) Human factors in
management information systems Ablex, Norwood,
NJ, USA (1988) pp 103-116

17 Shneiderman, B Designing the user interface Addison-
Wesley, Reading, MA, USA (1986)

BIBLIOGRAPHY

Doke, E R and Myers, L A ‘The 4GL: on its way to
becoming an industry standard?’ Data Manage. Vol 25
(1987) pp 10-12

Duncan, M ‘But what about quality? Datamation Vol 32
(1986) pp 135-6

Stafl ‘Why software prototyping works’ Datamation Vol
33 (1987) pp 97-103



