Object-oriented systems development: survey
of structured methods

A G Sutcliffe

Concepts of ohject-oriented system programming and system
desgn are reviewed in the light of previous research on systems
devilopment methodologies. Key principles are identified and a
selcction of svstem development methods is then judged against
these principles to determine their concordance with object-
oricnted design. The advantages of object-oriented system deve-
lopiment are reviewed in the light of the study of structured system
development methods.

objoct-oriented, object-oriented systems, structured methods,
sestems analvsis and design

Ohject-oriented programming (OOP) has been the sub-
ject of several studies' * that describe the principles of the
object-oriented (QO) approach and their incorporation
in the new generation of programming languages such as
C - +, Eiffel, and Smalltalk. In contrast, the object-
oriented approach has received little atiention in studies
on system development methods. This paper aims to
redress that balance and explore how OO concepts are
bemng integrated into structured systems development
methods.

Apart from the extensive interest in OOP languages.
OO approaches have received some attention in office
automation*®. More reccntly, several methods have
appeared claiming 1o be ‘object-oriented” (OOSA
(Object-Oriented Systems Analysis)®, OOA (Object-
Oriented Analysis)’. and HOOD (Hierarchically Object-
Oriented Design)®. As yet object-oriented system (QOS)
development methods are not in widespread commercial
practice, although interest in OO concepts continues to
grow. One unanswered question is what are the essential
difTerences between OO methods and those from the
more classical “structured camp’, e.g. Structured Systems
Analysis and Désign Method (SSADM), Jackson System
Development (JSD). and Structured Analysis/Structured
Design (SA/SD). If OO methods are to become accepted,
the advantages over and differences from previous meth-

ods have to be established and then the implications of

nmugration paths from current techniques to OO methods
should be made clear. This paper aims to throw some
licht on these questions by examining how current

Department for Business Computing, School of Informatics. The City
University, Northampton Square. London ECIV OHB, UK

system development methods fit criteria for OO develop-
ment.

First, OO concepts are described within the context of
system development, then a selection of system develop-
ment methods is reviewed.

OBJECT-ORIENTED CONCEPTS

0O development is claimed to improve software design
for reliability and maintenance. Further claims are that
the development process is made more efficient by reuse.
The justification for these claims rests on three principles:
abstraction, encapsulation, and inheritance.

Abstraction

OO approaches have been based on modelling structures
in the real world. Programming languages that facilitate
this modelling and support its implementation are said to
create more maintainable and reliable systems with reus-
able program components?.

Objects are an abstraction of parts of real-world
systems and model composite units of structure and
activity. Cook? points out that there are two roles that
objects fulfil: an implementation role related to improv-
ing the maintainability of programs, and a modelling
role, which addresses the problems of correct specifica-
tion of system requirements. OOS development should
emphasize the latter role, while supplying the necessary
specifications to enhance maintainability in implemen-
tation.

Encapsulation

Encapsulation is the concept that objects should hide
their internal contents from other system components to
improve maintainability. By making part of the design
local, objects hmit the volatility of change in the system.
The encapsulated parts of objects are hidden to insulate
them from the effects of system modifications.

Inheritance
Objects should have generic properties, i.¢.. support reu-
sability by property inheritance from superclass to sub-
class’. By organizing objects in class hierarchies. lower-
level objects can receive properties from higher-level
objects. This facilitates reuse of more general, higher-
level objects by specialization.

Two forms of inheritance may be supported: hierarchi-

Reprinted from Information and Softiware Technology, Vol. 33, No. 6, July/August 1991.

cal, in which a child object can inherit only from its
parent object, or multiple, when an object can inherit
properties from several parent objects. Multiple inheri-
tance may result in ‘polymorphism’, with one component
having different properties in several new locations, as it
is specialized in child objects.

These principles contribute to the OO model of
systems, which is composed of a network of objects
communicating by messages. Each object specifies both
data and activity and may share properties according to
a classification hierarchy. To enable comparison of
methods, the basic principles of the OO approach need
to be situated in a comparative framework that addresses
not only OO concepts, but also more traditional models
of structured methods. The ISO meta-schema (ISO
TC97) is taken as a starting point.

Evaluation of modelling components

The first question to resolve is what is an object, and
what is the difference between objects and more
traditional concepts such as entities and functions. The
starting point may be taken from the entity definition
given in the 1SO TC97 report”:

Any concrete or abstract thing of interest including
association among things.

The ISO report makes distinctions about entities on
three levels:

« Entity instances — the actual occurrence of one exam-
ple of an entity type.

o Entity type — a type defined by a set of common
properties to which all instances belong.

« Entity class — all possible entity types for which a
proposition holds, i.e., the set of instances for a parti-
cular entity type.

These definitions accord with the OO approach. Besides
entities, the other system components recognised by the
ISO report are propositions (i.e., rules), constraints,
which specify the behaviour of entities, and events, which
are defined as ‘The fact that something has happened in
either the universe of discourse, or the environment or in
the information system’. Events are modelled as mess-
ages in the OO approach, i.e., messages communicate
events to which objects respond. Objects record states,
i.e.. an unchanging reality altered by transitions from
one state to another, and react to events by changing
state'®. Events are modelled as messages passed within a
network of objects, and thereby controlling their behav-
iour™!, Rules, however, are more problematic.

The ISO separation of entities representing data struc-
tures from rules specifying control does not match the
OO concept because objects specify a composite of data
and activity. In the ISO meta-model, entities are not
considered to possess attributes, instead attributes are
regarded as entities in their own right. This is contrary to
OO approaches in which attributes are components of

302

objects. Furthermore, the ISO view of relationships does
not fit the OO conceptualization of relationships between
objects being either caused by events or specified in terms
of a classification hierarchy.

Object orientation, therefore, shares many of the 1SO
concepts, but by no means all. The main point of diver-
gence is the separation of activity and data specification,
a point that re-emerges when individual methods are
considered. Within the perspective of systems develop-
ment, the convergence of objects and traditional con-
cepts may be summarized as:

o Objects are close to the entity concept, i.e., something
of interest defined by a collection of attributes,
although objects add activity to the entity.

e Objects are a type with one or more instances of the
type, essentially the same as the entity-type concept.

e Objects instances may be changed by events in the
outside world or within the system and record a state
resulting from change.

Objects may have more or less activity associated with
them. At one extreme are data-oriented objects, which
undergo no operations other than simple updates to their
attributes. In contrast, a task-oriented object may pos-
sess few data items and much complex algorithmic pro-
cessing. An example of the latter is a mathematical calcu-
lation in an engineering system.

Given that objects may show variable structures and
properties, a useful classification is given by Booch™,
who divides objects into actors, agents, and servers.
Actors are objects that perform actions which influence
other objects in the system. and have similarities with
tasks and procedures; servers are the recipients of an
actor’s activity and are related to the database entity
concept; and, finally, agents are an amalgam of both
characteristics. In practice, the mix of object types within
a system will reflect the application, e.g., real-time
systems will have more actors, whereas data retricval
systems will have more servers.

So far the components of an OO model have been
contrasted with more traditional concepts. However,
conceptual models are only one facet of methods. The
next section develops the comparison from modelling
features into an evaluation framework.

EVALUATION PROCEDURE

A meta-model of OO development is illustrated in Figure
1. summarizing the components of OO conceptual
models, the principles of the approach, and the OO con-
ceptualization of the development life-cycle. Methods
should advise practitioners how to proceed as well as
giving them the tools with which to analysc and design
systems. Four dimensions are used in the evaluation
framework:

o Conceptual modelling: the method should contain a
means of modelling applications, and in the perspec-
tive of this study, the model should meet OO criteria.

Foo. emerts
O o -+
-
1dentfication =~
of apjects O Classification
f \ hierarchy
Ar3 515 ! \
| \
| Opject 4
¥ network U/—
model
de o
Spe: fication AN J O
O“/O {nheritance
/
' Reuse
Tee B ’ \

\ 7/
\
\ ¥
Mappings to 0-0 languages
Smalttatk, Eiffel, Co+

@Encapsmanon O/'
N ! Inler&

//O

Figure 1. Summary of object-oriented meta-model

ireo 2mentation

o Procedural guidance: a method should have clear steps
telling the anatyst how to conduct analysis, specifica-
tion, and design.

o Transformations: mcthods should give heuristics,
rules. and algorithms for changing specifications into
designs. Ideally. these steps should be automatable.

o Design products: the results of specification and design
should be clearly described, ideally delivering execu-
table designs as code.

This schema was derived from previous studies'! and
shares many criteria with other evaluation frameworks!?.
Systems development methods may be classified into
different groups that share some common approach or
philosophical background!'. Representative methods
from different groups were selected for comparison
aguinst the following framework.

Conceptual modelling

e ‘The data and processing control parts of a system are
modelled in one unit rather than separately.

o The method produces a network system model of
ubjects communicating by messages.

e The method explicitly models object types and
instances.))

e Classification of objects is supported with property
iheritance.

Praocedure and guidance

e The method should guide the analyst towards identify-
ing and describing objects.

e Guidance should be available for analysis, specifica-
uon, and design phases.

Transformations and products

e Design transformations should support change of OO
specifications into designs implementable in OQOP lan-
suages.

303

Table 1. Feature analysis of object-oriented methods

Method Abstraction Classifi- Inheritance Encapsula- Coverage
cation tion (R-A-S-D-I)
HOOD Y Y Partial Y e
00SD Y Y Y Y
00SA Y Partial - e
00A Y Y Y T —
ObjectOry Y Y Y Partial e
Key: Y =Yes.

R-A-S-D-1 in coverage refers to Requirements Analysis.
Analysis, Specification, Design, and Implementation. The mea-
surc of coverage is judged from the methods procedures and
notations.

In the following sections, a selection of system develop-
ment methods, chosen to cover diverse backgrounds
from real-time to information-processing applications, is
analysed to review how well they accord with OO con-
cepts.

First, OO methods are reviewed for their support of
OO principles, then traditional structured methods are
surveyed in terms of their modelling perspective (data,
process. or event)’* and their potential fit to the OO
approach. Selected methods are illustrated with specifi-
cations using the case study described in the Appendix.
Space precludes illustration of all of the methods. Com-
parison of methods’ specification is not the intention of
this paper: instead. selected specifications are given to
illuminate the differences between OO and non-OO
methods.

OBJECT-ORIENTED METHODS

The claims of OO methods can now be evaluated using
the OO meta-model. Each method is evaluated in terms
of its fit with OO method criteria and its coverage in
terms of analysis and design.

Hierarchical Object-Oriented Design (HOOD)8

As may be expected, this method scores well on OO
properties (sec Table 1). HOOD encourages modelling of
objects explicitly. although there is little guidance for
early analysis stages and structured analysis and design
lcchniques are even recommended for the purpose.
Objects arer modelled in a hierarchical manner. with
inheritance of properties between parent and child
objects. There is strong emphasis on the object interface
specification and encapsulation. A system network of
objects communicating by messages is created with
control by event messages. HOOD uses Booch's concep-
tion of actor and scrver objects.

HOOD supports object classes, but inheritance specifi-
cation is not detailed and reuse support is not explicit.
The method is better developed in the design phase and
gives explicit transformations into Ada. Overall, HOOD
incorporates many OO properties, but it is a real-time
design method, consequently data specification and asso-
ciated inheritance mechanisms receive less attention.

Allecation
Control

(iims
& hotels

Booking

Y matché st

films
Get 1nput o Put results
date ocator
constr-
aints, {1im 3
(/ ‘Oproperties
Hotel Film Booking
stock é
copies
Video-copy
Design component stock

I:: (object or module) copies
Figure 2. Object model of VI application produced by
OO0SD method

OO0SD design showing structure chart notation. Some design components
are shared with other methods, e.g.. ohjects Film, Hotel, Video-copy. and
Booking. Other components have been added by O0SD method, ¢.g..
Allocation control, Put results

Object-Oriented System Design (OOSD)"

This method assumes that an analysis phase has identi-
fied and partially specified objects. OOSD provides a
detailed notation for object classes and management of
inheritance. Inter-object communication is also specified
in terms of event/message types. The method supplies
detailed notation for interface description and encapsu-
lation, with local data and services. Part of an OOSD
specification of the case study application is given in
Figure 2. The system is modelled either as a sequentially
executed ‘hierarchy using the Yourdon structure chart
notation or as an asynchronous network of processes
with monitors.

No analysis advice is given, so coverage of OOSD is
necessarily restricted to the design phase. The notation
can become overcrowded and difficult to read.

Object-Oriented Systems Analysis (OOSA)®

Shaler and Mellor's method is described with a case
study prototyping approach. It gives many heuristics for
object identification and analysis, which help initial
abstraction and object modelling. OOSA owes its ances-
try to the data-modelling approach and many of its
recommendations are indistinguishable from entity-rela-
tionship modelling.

The method models an object relationship network
with subclasses. State-transition specifications are con-
structed for each object and functions are modelled with
dataflow diagrams. The object relationship model is
illustrated in Figure 3. The method does produce a com-
posite activity-data model, but this is achieved by attach-

g Dataflow message

15 shown
Hotel Lo Film
shows
b makes
is-a
is made)) T
is assigned
" to :
Booking »] Video- Copy
allocates

Figure 3. Object model of VI application produced by
00SA4

Because O0S A 1akes data-modelling approach, more active objects, ¢.g..
Clerk, Allocator, are not specified in object network. This functionality
would be described in daraftow diagrams

ment of activity to the data model, essentially merging
dataflow diagrams and state-transition models with
entities. The procedure for achieving this synthesis is not
explicit. The main criticism of OOSA is its lack of sup-
port for inheritance. Classes are supported, but only
inheritance of object properties is modelled. Inheritance
of services is not considered and reuse is not explicitly
supported. In addition, the method is underspecified in
the design phase.

Object-Oriented Analysis (OOA)’

OOA covers all OO concepts, although it is an analysis
method, hence coverage of design issues is weak (see
Table 1). Classification and inheritance are modelled and
abstraction is helped by the structure layer, which gives
an overview of object groupings for large systems.
Objects are a composite data activity specification. Three
links between objects are supported: relationship connec-
tions, which are modelled in the familiar data model
crow’s feet notation, classification hierarchies, and mess-
age passing. The resulting specification can appear over-
crowded. although Coad and Yourdon separate the
complexity into different layers (Subject, Structure,
Attribute, Service) and build the specification increment-
ally. An OOA specification showing the object model in
the service layer is depicted in Figure 4.

The method uses hierarchical inheritance and masking
rather than multiple inheritance, and specification of
encapsulation and object interfaces is not as detailed as
in-O0SD or HOOD. Overall, however, it does meet
many OO criteria.

ObjectOry'*

This method supports OO concepts of classification,
encapsulation, and inheritance. Abstraction is promoted
by levels in design from higher-level system vicws o
lower block and component levels. ObjectOry adds con-
cepts of user-centred design ‘uses cases’ to the 00
approach for specification of the user interfaces and
tasks provided by object services. Use cases are specified

(Hotei \ (Film
Name Title
Address Distributor
Constraints AN Certification

N Length
Language

Release, copy
ithdraw

Create, Amend
-angel

1 1
{ Booking \ Film-copy
Hotel
Film-titie
Copy-No 1 A Copy-number
Loan-date N Title

Return-date

Agree, amend,

Loan, Return

Clerk key
Siatus
ibutes .

attribut Objact
operations

Allocate, Change

\Cancel ____/ sub class
relationship

other refationship follow E-R conventions

Ficure 4. Object model for VI system produced by QO A
method

with dataflow diagrams. and this functional specification
is then mapped on to object services.

The composite data and activity definition of objects is
not strongly enforced and services (described as pro-
cesses) are also regarded as objects. Reuse is supported
by component librarics, and design transformations to
real-time languages are given (CHILL and Ada).
Guidance for analysis is less comprehensive and the tar-
get applications of ObjectOry, like HOOD, appear to be
real-time and engineering systems.

Summary of OO methods

The coverage of OO methods is variable and not all
methods meet the necessary range of criteria. HOOD
and OOSD give comprehensive design notations, but are
weak on prescriptive guidance. Indeed. guidance in the
analysis phase is totally absent. HOOD does fulfil most
00 criteria. but does not completely support property
inneritance. probably becausc its real-time orientation
does not necessitate specification of complex data struc-
tures within objects. OOSA produces an object model
with fewer components as a consequence of its data-
modelling heritage. whereas OOA is more likely to
identify actor as well as server objects. OOA meets many

305

Table 2. Summary of method specification medels and
approaches

Method Functional Data rela- Event Coverage Application
process tionship sequence (R-A-S-D-I)

1E Y Y Y e IS

ISAC Y Y N e 1S
SASD Y N ' A— 1S
SSADM Y Y Y e 1S
SADT Y Y - IS.RT
ISD N Y Y e IS.RT
NIAM Y Y N e IS (data

intensive)

Mascot Y N N RT

Key: Y = Yes. N = No.
Coverage of the life-cycle: Requirements (R), Analysis (A)
Specification (8). Design (D), Implementation (1).
Application: IS = information systems, RT = real-time.

Table 3. Summary of structured methods’ object-oriented
features

Object Data + Encapsu- Types + Classifi-

model activity lation instances cation
IE Poss N N Y N
ISAC Y N N N N
SASD Y N N N N
SSADM | Y N N Y N
SADT Y N N N N
JSD Y Y Y Y N
NIAM Poss Poss N Y Y
Mascot Y Y Y Y N

Notes:

(1) For the object model. Poss means an object model could
possibly be constructed from the data modc! in these methods.

(2) Toscore Y for the object model, methods have to specify
a concurrent network of message-passing processes, however
these processes may be functional or data-oriented. This can be
cross-checked on column two. which records whether data and
processing are modelled together in an object.

OO criteria and gives procedural advice. although its
coverage of the design phase i1s not extensive. Conse-
quently. no complete OO method exists, although all the
issues arc addressed separately in different methods.

REVIEW OF OBJECT ORIENTEDNESS
OF SYSTEMS DEVELOPMENT
METHODS

A summary feature analysis of the methods investigated
is given in Table 2. The types of model employed by
methods are categorized as functional/process (typically
represented by dataflow diagrams), data relationship
(entity-relationship diagrams). or event (entity life his-
tories). The feature analysis also includes the approxi-
mate life-cycle coverage of each method. For further
details of method comparisons, see Loucopoulos er al.'
and Olle er al.'2. A summary of the OO features is iltus-
trated in Table 3 and described in more detail in the
following sections.

Information Engineering (I1E)'>

Data modelling is an important component of 1E, which
encourages object modelling of the data components of a
system. Functional specification uses process depen-
dency and action diagrams, separated from data modell-
ing, thereby discouraging common data and control spe-
cification. Cross-referencing of functions to entities is
provided for and state-transition diagrams explicitly
associate event-creating operations with entities, giving a
partial QO specification.

Concepts of type-instance are supported; also IE
encourages conceptual modelling of business processes
leading towards object orientation. A data model com-
posed of entities and relationships gives a network speci-
fication for the static part of systems, but separation
during analysis of processing from data and the emphasis
on functional decomposition means that IE cannot be
regarded as truly object-oriented.

Information systems activity and change
analysis (ISAC)'®

This method advocates top-down functional decompos-
ition of processing and data in separate specifications as
activity and data diagrams. Emphasis is placed on analy-
sis of change, and processes are viewed as transforming
data, which encourages a partial OO approach. Type-
instance and classification concepts are not supported.
Even though a network model of processes and data
structures is produced, the separation of data from
system control makes ISAC more functionally oriented
than object-oriented.

Structured Analysis/Structured Design
(S ASD)I7—I9

SASD uses top-down functional decomposition to
analyse systems in terms of a network of processes con-
nected by dataflow messages (see Figure 5). The method
is based on principles of functional cohesion, which
groups actions pertaining to a single goal in processing
units, and coupling, which aims for low interdependence
between system components. Dataflow diagrams specify
the system as a network of communicating functions,
which is transformed into a hierarchical design. The
method does not Support_ any OO concepts, separates
data and process specification, and encourages specifica-
tion of functionally based system components. More
recent versions have added state-transition diagrams and
bottom-up analysis driven by event identification’. This
creates more potential for expressing OO specifications.

Structured Systems Analysis and Design
Method (SSADM)?

SSADM is a composite method derived from structured
analysis, structured design and data analysis. Process
analysis is by dataflow diagramming and separated from
data analysis. which employs an entity-relationship

306

Helels Zonstraints

Hotel
details

Hotel
list

Sort
Hotel
constr

Sorted
hotel
list

Check
previous

Previous
allocations

Bookings

Available
New

allocations

Generate
Bookings

Copy

Film titles request

Allocatio
notice

New

Add rew titles

fiims

Hotels

Vi

Distrib-
utor

O [

Figure 5. Dataflow diagram specification of VI application
using SSA

Data
flow

Process
(or function)

External
entity

Data

store =7

approach. As with IE, data analysis encourages object
orientation, but the separation of processing from data
specification and use of top-down functiona! decompos-
ition results in specification of functionally related pro-
cessing structures. As a result most of the views
expressed about IE also apply to SSADM. Entity life
histories do associate processing events with data
objects, but this is just one modelling view within the
method. In version 4 of SSADM it forms a major theme
within the overall specification and hence encourages OO
specifications. Although SSADM does encourage data
abstraction by conceptual modelling, functional modell-
ing is also supported and hence it cannot be said to be
truly object-oriented.

Structured Analysis and Design Technique
(SADT)?!

SADT uses top-down decomposition to analyse systems
in successively increasing levels of detail. Specification
uses network diagrams of processes connected by data
flows, control messages, and mechanisms. The method
does encourage modelling of real-world problems, but
constructs separate activity and data models using the
same box and arrow notation. More emphasis is placed
on activity modelling. SADT does not support type-
instance concepts, although some classification is poss-
ible in the hierarchical decomposition of data. The sepa-
ration of process specification from data makes this
method unsuitable for an OO approach.

Video-copy

Allocator

Entity process (object)
or functlon process

Message connections
(datastreams and state
vectors)

O ©

Figure 6. Systent network diagram of VI sysiem produced
hy JSD

Jackson System Development (JSD)?2-3

JSD produces system models based on networks of con-
current communicating processes, with a type-instance
concept, although classification and property inheritance
is not supported. System control is modelled in terms of
time-ordering of actions associated with entities, and
more recent versions have placed more emphasis on data
analysis, resulting in an object model that combines data
and operations. A JSD system specification diagram (see
Figure 6) shows a network of communicating processes
similar to an object model. Because of its emphasis on an
enltity-life-history approach, JSD has much in common
with OO methods, although it does not explicitly support
all OO0 concepts. Even though object classification is not
supported, JSD does advocate alternative views on an
object, called entity roles.

Nijssen’s Information Analysis Method
(NIAM)##

NIAM is a conceptual-modelling method that concen-
trates on data specification during the early parts of the
analysis life-cycle. Based on the ANSI/SPARC schema,
it ~upports data abstraction with conceptual modelling,
thereby encouraging object orientation. Process analysis
is by addition of semantic constraints to the data model
and by specification of transactions for data input and
output using a rule-based approach. Type-instance con-
cepts are supported, as is classification by entity sub-
types, so NIAM can be said to possess some OO proper-
tics, although it does not support inheritance. However,
emphasis on constraint-based processing tightly coupled
1o relationship roles in the data model does detract from
the OO approach.

307

Mascot-3%°

Mascot advocates functional decomposition of systems,
however, recent versions have introduced modular con-
cepts of encapsulation and clearly defined interfaces for
system components, Mascot system specifications consist
of a network of communicating processes. and hierarchi-
cal abstraction is supported. Mascot has a type-instance
concept for implementing many instances of software
modules from one template ‘type’. However. it does not
explicitly support classification of objects, although some
inheritance of communication procedures between
modules is provided for by the access interface. Encapsu-
lation is encouraged by the strongly typed interface spe-
cification of modules.

Mascot gives little guidance during early analysis, and
other functional methods such as structured analysis and
CORE are recommended. Overall. Mascot encourages
the analyst to produce a functionally oriented specifica-
tion becausc of its imprecise early stages and emphasis
on functional decomposition, although its implemen-
tation does incorporate OO features.

Summary of method evaluation

Methods using functional decomposition (e.g., SASD)
encourage identification of goal-related components in
systems (see Figure 5). in contrast to the OO approach
(see Figures 3 and 4). which promotes system compo-
nents more compatible with data models. SASD encour-
ages specification of a hierarchy of task/procedural units
that are unrelated to the objects on which the tasks act.
Although it may be argued that functions are essen-
tially objects containing only activity. a method’s view-
point will influence modelling. An analyst trained in the
functional approach will naturally identify goal-related
modules using the principles of cohesion and functional
decomposition'™*, In contrast an analyst using an OO
viewpoint will identify modules that relate to a model of
the real world without prejudice to processing goals.
However. OO methods such as OOSD and HOOD do
not encourage a specific view on object identity. so it is
possible to argue that structured analysis and design
modules are equivalent to actor objects in Booch’s sense.
Resolution of this dichotomy may depend on the fit of
method and application. with real-time methods (e.g..

‘HOOD, ObjectOry) tending towards functional, actor-

type objects. For information systems, data-oriented
objects may be more suitable.

Consequently for information systems. structured
methods with a data-modelling heritage (e.g.. 1E,
SSADM) arc closer to the OO approach. Data modelling
encourages specification of the static aspects of object
structures. Unfortunately, data modelling ignores dyna-
mic system components, and as a result these methods
generally borrow functional specification for the dyna-
mic parts of the system from methods such as structured
analysis. Process specification that relies on functional
decomposition will bias implementation towards func-
tionally based structures. Another method in this group

is NIAM, which emphasizes semantic data modelling,
combining entities and rules in one model. In spite of
this, NIAM does not explicitly attach all the system
activity specified as rules to objects.

JSD views entities as being active and creates a system
model explicitly based on real-world objects, combining
data and control within one structure. JSD, however,
does not support object classification. Instead, it advo-
cates multiple views of an object in terms of roles that
could be used to specify property sharing. Mascot cannot
be regarded as truly object-oriented because it uses func-
tional decomposition to identify modules. However,
Mascot, in common with other real-time methods, does
include OO concepts such as encapsulation.

In summary, current structured methods using an
entity-modelling and/or entity-life-history approach
have potential to evolve towards object orientation.
Classification and encapsulation are supported, but
separately in different methods. Inheritance is not sup-
ported, although data-oriented methods could incorpor-
ate these features, as illustrated by the evolution of
OOSA and OOA.

DISCUSSION

The first part of the discussion reviews OO concepts
proposed by previous studies, followed by discussion of
the object orientedness of system development methods.

Object-oriented concepts

Objects are close relatives of abstract data types®’, which
first brought specification of data structures and oper-
ations together. Objects, however, go beyond abstract
data types, which emphasize control from a viewpoint of
constraints on data structures, to encompass a wide
range of system components. Booch'” defines objects as
entities characterized by their actions, essentially compo-
site specifications of the active, processing and the static,
data-related components of systems. Reviewers of OOP
have also defined objects as being composite specifica-
tions of data and control/actions! }, combined with
properties to enhance program maintenance and reusa-
bility of modules.

The importance of modelling systems that can respond
to change is discussed by Maglennan®, who points out
that there is a dichotomy between valued-oriented and
OO programming. The former being based on math-
ematics is concerned with unchanging definitions and
alias values; object orientation, however, is about change
and the tasks of recording and responding to it. Maclen-
nan?’ develops this point to demonstrate that many cur-
rent programming languages are value- rather than
object-oriented.

While current programming languages rarely support
OO principles, a new generation of languages has been
developed to support object programming, some of
which (e.g., C+ +, Smalitalk) have gained widespread
acceptance. To reap the rewards of improved maintaina-
bility and reusability which these languages offer, system

308

development methods need an QO approach. otherwise
procedural specifications will continue to be imple-
mented, failing to reap the advantages of OO design.

General conclusions

Principles of OO development have been devised to
tackle problems of poor specification, the lack of main-
tainability, and the need for software reusability. It may
be argued that use of a particular system development
method will not bias implementation of OO systems and
that OO designs may be derived from any specification.
This view is unrealistic, as demonstrated in this study by
the different specifications produced by application of
OO0 and non-O0 methods. However. data model and
OO0 specifications show_ considerable convergence, sug-
gesting a feasible migration path from structured meth-
ods such as JSD, IE, and SSADM towards further object
orientation.

Functionally based development methods (e.g.. Struc-
tured Analysis) are less well suited to development of OO
systems. If functionally based methods are used, the
designer would have to map functional components on
to objects, a difficult task that may require re-specifica-
tion of large parts of the system. Some attempts have
tried to graft functionality on to objects in an ad hoc
manner®, resulting in muddled specification of objects
without a clear modelling basis. More recent develop-
ments have taken the entity model as the starting point
for object definitions and then used dataflow design to
model services, alias functionality®’,

The functional bias problem arises with OO real-time
methods (e.g.. HOOD), which either leave the analytic
phase underspecified or recommend use of methods
based on functional decomposition and procedural
dependency (e.g., SADT?' and CORE) as front-ends
for requirements analysis and early specification stages.
The OOSD method' builds on structured design con-
cepts and develops a notation and design procedure for
object-like modules. The method, however, does not
cover requirements analysis and specification. OO analy-
sis methods offer coverage of the early life-cycle phases®’,
by integrating object specification with dataflow diagram
specification and entity-relationship analysis, although
only the Coad and Yourdon method meets all the OO
modelling requirements. OO analysis does not offer good
coverage in early life-cycle phases. but no design trans-
formations are included. All of these methods have yet to
be proven in practice and have little computer-aided
software engineering (CASE) tool support, but they do
lend support to the importance of the data model in OO
concepts.

Within the current generation of structured system
development methods only JSD has a truly OO approach
to modelling, even though it does not support classifica-
tion. However, data-modelling approaches using rules
applied to data structures, as found in NIAM’s semantic
data model, may also provide a promising way forward.
The derivation of OO specification as created by the
Coad and Yourdon method demonstrates that method

evolution is possible and practical. Further evidence of
evolution moves may be the importance attached to
entity life histories, essentially Jackson techniques, in
version 4 of SSADM.

Migration to object orientation, however, will largely
depend on system developers being convinced of the
benefits of the approach. Thorough evaluations of 00
claims for improved maintainability and reuse have not
been published, if they exist at all. Object models alone
are unlikely to be sufficient to promote extensive reuse as
none of the OO methods contains procedures or explicit
modelling techniques for reusable system development.
initial studies of this problem suggest considerable
problems exist in specifying generic objects®. Further-
mere, because much information about domains is con-
tained in the relationships between objects and in pro-
positional statements object models alone may be
insufficient for specification of applications. OO methods
may need to move in the direction of semantic data
modelling e.g., TAXIS* and CMLY, 1o augment the
daajactivity specification of objects with richer seman-
tics. The inter-relationship between objects and system
control could also present problems for OO methods. as
recognised by Nierstrasz'. Modelling techniques to spe-
cify inter-object communication and message-passing
control will have to progress beyond concepts of client-
server objects as found in HOOD.

[f, to paraphrase Rentsch’'s' prediction. -object
orented systems development will be in the 1990's what
structured design was in the 1970°s’, system development
methods will have to pay more attention to OO concepts
and approaches. On the other hand, proponents of the
OO approach will have to demonstrate the validity of
their claims by evaluation in industrial-scale appli-
ca.ions.

ACKNOWLEDGEMENTS

The author is grateful to colleagues at City University,
Alwyn Jones and John Crinnon. for their comments and
suggestions.

This work was based on research within the AMA-
DEUS project 1229(1252), partially funded by the Esprit
programme of the Commission of the European Com-
munitics.

REFERENCES

I Rentsch, T "Object oriented programming" SIGPLAN
Notices Vol 17 No 9 (1982) pp 51-61

2 Cohen, A T "Data abstraction. data encapsulation and
object oriented programming’ SIGPLAN Notices Vol 17
No 1 (1984) pp 31- 35

3 Cook, S "Lapguages and object oriented programming’
Soft. Eng. J. Vol 1 No 2 (1986) pp 7380

4 Nierstrasz, O M ‘An object-oriented system' in Tsichritzis,
D (ed) Office auromation Springer-Verlag (1985)

5 Tsichritzis, D "Objcciworld’ in Tsichritzis, D (ed) Office
automation Springer-Verlag (1985)

6 Shaler, S and Mellor, S J Object oriented systems analvsis
Yourdon Press (1988)

7 Coad, P and Yourdon, E Object oriented anulysis Yourdon
Press (1990)

309

8 Robinson, P J (ed) The HOOD manual, issue 2.1 European
Space Agency. Noordwijk, The Netherlands (1987)
9 van Griethyuysen (ed) ‘Concepts and terminology for the
conceptual schema and the information base, computers
and information processing’ ISO/TC97/SC5/WG3 Interna-
tional Organization for Standardization, Geneva, Switzer-
land (1982)
Booch, G ‘Objcct oriented development’ JEEE Trans. Soft.
Eng. Vol 12 No 2 (1986) pp 211-221
Loucopoulos, P, Black, W J, Sutcliffe, A G and Layzel, P J
“Towards a unified view of system development methods’
Intr. J. Inf. Manage. Vol 7 No 4 (1987) pp 205-218
Olle, T W et al. A framework for the comparative evaluation
of information syvsiems methodologies Addison-Wesley
(1989)
Wasserman, A, Pircher, P A and Muller, R J “Concepts of
object oriented design’ Technical report Interactive Deve-
lopment Environments, San Francisco, CA. USA (1989)
Jacobsen, 1 "Object oriented development in an industrial
environment® in Proc. OOPSLA-87 ACM Press (1987) pp
183-191
Macdonald, | G ‘Information engineering -— an improved,
automatable methodology for the design of data sharing
systems’ in Olle, T W, Sol, H G and Verrijn-Stuart, A A
(eds) Information systems design methodologics: improving
the practice North-Holland (1986)
Lundeberg, M, Goldkuhl, G and Nilsson, A /nformation
systemys development: a systematic approach Prentice Hall
(1981)
DeMarco, T Structured analysis and svstem specification
Yourdon Press (1978)
Yourdon, E and Constantine, L Structured design Yourdon
Press (1977)
Yourdon, E Modern systems analysis Preutice Hall (1990)
Longworth, P G and Nicholls, D SSADM: ~Structured
Svstems Analvsis and Design Method NCC Publications
(1986)
Ross, D T and Schoman, K G ‘Structured analysis for
requirements definition” JEEE Trans. Soft. Eng. Vol 3 No |
(1977) pp 1-65
Jackson, M A System development Prentice Hall (1983)
Sutcliffe, A G Jackson System Development Prentice Hall
(1988)
Nijssen, G M 4 conceptual framework for organisational
aspects of future data bases Control Data Corporation,
Brussels, Belgium (1978)
Simpson, H “The Mascot method” Soft. Eng. J. Vol 1 No 3
(1986) pp 103-120
Mullery, G ‘CORE — 4 mecthod for controlled require-
ments specification’ in Proc. 4th Int. Conf. Software Engi-
neering 1EEE (1979)
Maclennan, B “Values and objects in programming lan-
guages' SIGPLAN Notices Vol 17 No 12 (1982) pp 75-81
Balin, S C ‘An object oriented requirements specification
method” Conunun. ACM Vol 32 No 5 (1989) pp 608-620
Sutcliffe, A G "Towards a theory of abstraction: some
invistigations into the object oriented paradigm’ Technical
report City University, London, UK (1991)
Greenspan, S J and Mylopoulos, J “A knowlcdge represen-
tation approach to software engineering: the TAXIS
project’ in Proc. Canadian Information Processing Society
Ontario. Canada (1983) pp 163-174
31 Jarke., M ‘DAIDA: conceptual modelling and knowledge
based support for information systems development pro-
cess’ in Sofiware engineering in Esprit { Techniques et
Science Informatiques) Vol 9 No 2 Dunod-AFCET (1990)

10

t

12

14

15

16

17
18
19
20
21
22
23

24

26

27
28

29

APPENDIX: CASE STUDY

A complete description of this case study can be obtained from
the author. A summary is presented here.
Video International hires video tapes of films to hotels, who

then transmit videos to guests via internal cable TV networks.
Films are hired from distributors, who charge a rental fee based
on the popularity of the film and the duration hired. Video
International has contracts with hotels to supply a set number
of films as specified by the hotel. Films are hired in blocks of
one or more weeks and it is usual for hotels to offer guests a
choice of four to five films. Hotels imposc constraints on the
type of film they wish to accept. Some hotels have a policy on
non-violent films, some films may offend religious values, while
other hotels accept films with specific running lengths. In addi-
tion, all hotels do not wish to be allocated the same film twice.
Hotels may also change their film preferences from time to

310

time.

The problem is to satisfy the demand for films from the
available titles within constraints imposed by individual hotels.
The hiring history of cach hotel has to be examined to deter-
minc which films they have not received. Films are allocated to
hotels and the appropriate number of copics are made for the
demand. Video copies are delivered to hotels. Sometimes video
tapes break and the copy has to be replaced. Records of the
hotel vidco booking log have to be updated. showing which
film copies have been allocated to cach hotel for cach week.
Revenue is calculated from these logs, however, billing is not
within the remit of the investigation,

