Object-Oriented Development

Linda M. Northrop

HISTORICAL PERSPECTIVE

The object-oriented model for software development has become exceedingly attractive as the best answer to the increasingly
complex needs of the software development community. What was first viewed by many as a research curiosity and an im-
practical approach to industrial-strength software is now being enthusiastically embraced. Object-oriented versions of most
languages have been or are being developed. Numerous object-oriented methodologies have been proposed. Conferences,
seminars, and courses on object-oriented topics are extremely popular. New journals and countless special issues of both aca-
demic and professional journals have been devoted to the subject. Contracts for software development that specify object-ori-
ented techniques and languages currently have a competitive edge. Object-oriented development is today what structured de-
velopment was to the 1970s, and the object-oriented movement is still accelerating.

Concepts like “objects” and “attributes of objects” actually date back to the early 1950s when they appeared in early works
in artificial intelligence (Berard, 1993). However, the real legacy of the object-oriented movement began in 1966 when Kristen
Nygaard and Ole-Johan Dahl moved to higher levels of abstraction and introduced the language Simula. Simula provided en-
capsulation at a more abstract level than subprograms; data abstraction and classes were introduced in order to simulate a
problem. At approximately the same time, Alan Kay was working at the University of Utah on a personal computer that he
hoped would be able to support graphics and simulation. Due to both hardware and software limitations, Flex, Kay’s computer
venture, was unsuccessful. However, his ideas were not lost and surfaced again when he joined Xerox at the Palo Alto Re-
search Center (PARC) in the early 1970s.

At PARC, he was a member of a project that espoused the belief that computer technologies are the key to improving com-
munication channels between people and between people and machines. Based upon this conviction and influenced by the
class concept in Simula, the turtle ideas LOGO provided in the Pen classes, the abstract data typing in CLU, and the incre-
mental program execution of LISP, the group developed Smalltalk. In 1972, the first version of Smalltalk was released by
PARC. About this time, the term “object-oriented” was coined. Some people credit this to Alan King, who is said to have used
the term to characterize Smalltalk. Smalltalk is considered to be the first true object-oriented language (Goldberg & Robson,
1983), and today Smalitalk remains the quintessential object-oriented language. The goal of Smalltalk was to enable the de-
sign of software in units that are as autonomous as possible. Everything in the language is an object; that is, an instance of a
class. Objects in this nascent Smalltatk world were associated with nouns. The Smalltalk effort supported a highly interactive
development environment and prototyping. This original work was not publicized and was viewed with academic interest as
being highly experimental.

Smalltalk-80 was the culmination of a number of versions of the PARC Smalltalk, and was released to the non-Xerox world
in 1981. The August 1981 issue of Byte featured the Smalltalk efforts. On the cover of the issue was a picture of a hot air bal-
loon leaving an isolated island that symbolized the launch of the PARC object-oriented ideas. It was time to start publicizing it
to the software development community. The impact was gradual at first but increased to the current level of flurry about ob-
ject-oriented techniques and products. The balloon was in fact launched and there was an effect. The early Smalltalk research
in environments led to window, icon, mouse, and pull-down window environments. The Smalltalk language influenced the de-
velopment in the early to mid 1980s of other object-oriented languages, most notably Objective-C (1986), C++ (1986), Self
(1987), Eiffel (1987), and Flavors (1986). The application of object-orientation was broadened. Objects no longer were associ-
ated just with nouns, but also with events and processes. In 1980, Grady Booch pioneered the concept of object-oriented de-
sign (Booch, 1982). Since then, others have followed suit, and object-oriented analysis techniques have also begun to be pub-
licized. In 1985, the first commercial object-oriented database system was introduced. The 1990s brought an ongoing
investigation of object-oriented domain analysis, testing, metrics, and management. The current new frontiers in object tech-
nology are design patterns, distributed object systems, and Web-based object applications.

MOTIVATION

Why has the object-oriented movement gained such momentum? In reality, some of its popularity probably stems from the
hope that it, like so many other earlier software development innovations, will address the crying need for greater productivi-

291



ty, reliability, maintainability, and manageability. However, aside from the hope that object orientation is, in fact, the “silver
bullet,” there are many other documented arguments to motivate its adoption.

Object-oriented development adds emphasis on direct mapping of concepts in the problem domain to software units and their
interfaces. Furthermore, it is felt by some that, based upon recent studies in psychology, viewing the world as objects is more
npatural since it is closer to the way humans think. Objects are more stable than functions; what most often precipitates software
change is change in required functionality, not change in the players or objects. In addition, object-oriented development sup-
ports and encourages the software engineering practices of information hiding, data abstraction, and encapsulation. In an object,
revisions are localized. Object orientation results in software that is easily modified, extended, and maintained (Berard, 1993).

Object orientation extends across the life cycle in that a consistent object approach is used from analysis through coding.
Moreover, this pervading object approach quite naturally spawns prototypes that support rapid application development. The
use of object-oriented development encourages the reuse of not only software but also design and analysis models. Further-
more, object technology facilitates interoperability; that is, the degree to which an application running on one node of a net-
work can make use of a resource at a different node of the network. Object-oriented development also supports the concurren-
cy, hierarchy, and complexity present in many of today’s software systems. It is currently necessary to build systems, not just
black-box applications. These complex systems are often hierarchically composed of different kinds of subsystems. Object-
oriented development supports open systems; there is much greater flexibility to integrate software across applications. Final-
ly, use of the object-oriented approach tends to reduce the risk of developing complex systems, primarily because system inte-
gration is diffused throughout the life cycle.(Booch, 1994).

OBJECT-ORIENTED MODEL

The object-oriented model is more than a collection of new languages. It is a new way of thinking about what it means to com-
pute and about how information can be structured. In the object-oriented model, systems are viewed as cooperating objects
that encapsulate structure and behavior and belong to classes that are hierarchically constructed. All functionality is achieved
by messages that are passed to and from objects. The object-oriented model can be viewed as a conceptual framework with the
following elements: abstraction, encapsulation, modularity, hierarchy, typing, concurrence, persistence, reusability, and exten-
sibility.

The emergence of the object-oriented model does not mark any sort of computing revolution. Instead, object orientation is
the next step in a methodical evolution from both procedural approaches and strictly data-driven approaches. Object orienta-
tion is the integration of procedural and data-driven approaches. New approaches to software development have been precipi-
tated by both programming language developments and increased sophistication and breadth in the problem domains for
which software systems are being designed. Although, in practice, the analysis and design processes ideally precede imple-
mentation, it has been the language innovations that have necessitated new approaches to design and, later, analysis. Language
evolution, in turn, has been a natural response to enhanced architecture capabilities and the ever increasingly sophisticated
needs of programming systems. The impetus for object-oriented software development has followed this general trend. Figure
1 depicts the many contributing influences.

Perhaps the most significant factors are the advances in programming methodology. Over the last several decades, the sup-
port for abstraction in languages has progressed to higher levels. This abstraction progression has gone from address (machine
languages), to name (assembly languages), to expression (first-generation languages, e.g., FORTRAN), to control (second-
generation languages, e.g., COBOL), to procedure and function (second- and early third-generation languages, e.g., Pascal),
to modules and data (late third-generation languages, e.g., Modula 2), and, finally, to objects (object-based and object-orient-
ed languages). The development of Smalltalk and other object-oriented languages as discussed above necessitated the inven-
tion of new analysis and design techniques.

These new object-oriented techniques are really the culmination of the structured and database approaches. In the object-
oriented approach, the smaller-scale concerns of dataflow orientation, like coupling and cohesion, are very relevant. Similarly,
the behavior within objects will ultimately require a function-oriented design approach. The ideas of the entity relationship
(ER) approach to data modeling from the database technology are also embodied in the object-oriented model.

Advances in computer architecture, leading to increased capability and decreased cost, and in the introduction of objects
into hardware (capability systems and hardware support for operating systems concepts) have likewise affected the object-ori-
ented movement. Object-oriented programming languages are frequently memory and MIPS intensive. They require and are
now utilizing added hardware power. Philosophy and cognitive science have also influenced the advancement of the object-
oriented model in their hierarchy and classification theories (Booch, 1991). And finally, the ever increasing scale, complexity,
and diversity of computer systems have helped both propel and shape object technology.

Because there are many and varied influences on object-oriented development, and because this approach has not reached
maturity, there is still some diversity in thinking and terminology. All object-oriented languages are not created equal nor do

292



structured languages database languages

structured analysis and design data driven analysis and design

advances in programming

methodology

object-oriented programming

Object-Oriented Develop!nent
A

advances in cognitive science

increasing scale, advances in computer architecture
complexity, diversity
of systems

Figure 1. Influences on object-oriented development.

they refer to the same concepts with consistent verbiage across the board. And though there is a movement toward some unifi-
cation, there is no complete consensus on how to do object-oriented analysis and object-oriented design nor on the symbology
to use to depict these activities. Nevertheless, object-oriented development has proven successful in many application areas in-
cluding air traffic control, animation, banking, business data processing, command and control systems, computer aided de-
sign (CAD), computer integrated manufacturing, databases, document preparation, expert systems, hypermedia, image recog-
nition, mathematical analysis, music composition, operating systems, process control, robotics, space station software,
telecommunications, telemetry systems, user interface design, and VLSI design. It is unquestionable that object-oriented tech-
nology has moved into the mainstream of industrial-strength software development.

OBJECT-ORIENTED PROGRAMMING

Concepts

Since the object-oriented programming efforts predate the other object-oriented development techniques, it is reasonable to
focus first on object-oriented programming. In object-oriented programming, programs are organized as cooperating collec-
tions of objects, each of which is an instance of some class and whose classes are all members of a hierarchy of classes united
via inheritance relations. Object-oriented languages are characterized by the following: object creation facility, message pass-
ing capability, class capability, and inheritance. Although these concepts can and have been used individually in other lan-
guages, they complement each other in a unique synergistic way in object-oriented languages.

Figure 2 illustrates the procedural programming model. To achieve desired functionality, arguments are passed to a pro-
cedure and results are passed back. Object-oriented languages involve a change of perspective. As depicted in Figure 3,
functionality is achieved through communication with the interface of an object. An object can be defined as an entity that
encapsulates state and behavior; that is, data structures (or attributes) and operations. The state is really the information
needed to be stored in order to carry out the behavior. The interface, also called the protocol, of the object is the set of mes-
sages to which it will respond. Messaging is the way objects communicate and therefore the way that functionality is
achieved. Objects respond to the receipt of messages by either performing an internal operation, also sometimes called a

293



Arguments in

r

\ Data
S Structures

CODE Interface 4
Operations
Results out
\
Figure 2. Procedural model. Figure 3. Object-oriented model.

method or routine, or by delegating the operation to be performed to another object. All objects are instances of classes,
which are sets of objects with similar characteristics, or, from another viewpoint, a template from which new objects may
be created. The method invoked by an object in response to a message is determined by the class of this receiver object. All
objects of a given class use the same method in response to similar messages. Figure 4 shows a DOG class and objects in-
stantiated from the dog class. All the DOG objects respond in the same way to the messages sit, bark, and roll. All DOG
objects will also have the same state (data structures), though the values contained in what are typically called state vari-
ables can vary from DOG object to DOG object.

Classes can be arranged in a hierarchy. A subclass will inherit state and behavior from its superclass higher in the inheri-
tance hierarchy structure. Inheritance can be defined as the transfer of a class’ capabilities and characteristics to its subclasses.
Figure 5 shows a subclass DOBERMAN of the original DOG:class. An object of the DOBERMAN class will have the bark,
sit, and roll behavior of the DOG class, but, in addition, it will have the the kill behavior particular to the DOBERMAN class.
When a message is sent to an object, the search for the corresponding method begins in the class of the object and will
progress up the superclass chain until such a method is found or until the chain has been exhausted (when an error would oc-
cur). In some languages, it is possible for a given class to inherit from more than one superclass. This capability is called mul-
tiple inheritance.

When dynamic binding is present, inheritance results in polymorphism. Polymorphism essentially describes the phenome-
non in which a given message sent to an object will be interpreted differently at execution based upon subclass determination.
Figure 6 illustrates a superclass UNMEMBER with its subclasses. If the message “speak” is sent to an object, at execution
time it will be determined where the appropriate speak method will be found based upon the current subclass association of
the object. Thus, the polymorphism means that the speak capability will vary and in fact will be determined at execution. It is
possible for a method to not be actually defined in the superclass but still be included in the interface and, hence, be inherited
by subclasses. One calls such a superclass an abstract class. Abstract classes do not have instances and are used only to create
subclasses. For example, UNMEMBER would be an abstract class if the method for the message speak were not defined in
UNMEMBER. Including speak in the interface of UNMEMBER, however, would dictate that speak would be a message com-
mon to all subclasses of UNMEMBER but the exact speak behavior would vary with each subclass. Abstract classes are used
to capture commonality without determining idiosyncratic behavior.

bark sit roll

DOG

bark sit roll

kill

Figure 4. Instantiation of objects from a class. Figure 5. Inheritance.

294



)

AMERICAN NGLISHMAN

Figure 6. Polymorphism.

(P

Languages

There are essentially four branches of object-oriented languages: Smalltalk-based, C-based, LISP-based, and Pascal-based.
Simula is actually the common ancestor of all of these languages. The terminology and capability of the object-oriented lan-
guages varies considerably. A sampling of popular object-oriented languages in each branch is given in Table 1. The Smalltalk-
based languages include the five versions, including Smalltalk-80, developed at PARC, as well as Digitalk Smalltalk and oth-
er such versions. Smalltalk-80 is considered the truest object-oriented language, although it and the others in this group do not
have multiple inheritance capability.

In the C-based category are languages that are derived from C. Objective-C was developed by Brad Cox, has an extensive
library, and has been used successfully to build large systems. C++ was written by Bjarne Stroustrup of AT&T Bell Labs. C’s
STRUCT concept is extended in C++ to provide class capability with data hiding. Polymorphism is implemented by virtual
functions that deviate from the normal C typing, which is still resolved at compilation. C++ Version 2.0 includes multiple in-
heritance. C++ is a popular choice in many software areas, especially those in which UNIX is preferred. Similar to C and C-++
but much simpler is Java, the latest object-oriented language, which hit the software development scene with great fanfare in
1995. Java, developed at Sun Microsystems, in addition to being object oriented has the capability to compile programs into
binary format (applets) that can be executed on many platforms without compilation, providing embedded executable content
for Web-based applications. Java is strongly typed and has multithreading and synchronization mechanisms like Ada, yet of-
fers high performance and is portable, like C.

The many dialects, including LOOPS, Flavors, Common LOOPS, and New Flavors, in the LISP-based branch were precip-
itated by knowledge representation research. The Common LISP Object System (CLOS) was an effort to standardize object-
oriented LISP. The Pascal-based languages include, among others, Object Pascal and Turbo Pascal, as well as Eiffel. Object
Pascal was developed by Apple and Niklaus Wirth for the Macintosh. The class library for Object Pascal is MacApp. Turbo
Pascal, developed by Borland, followed the Object Pascal lead. Eiffel was released by Bertrand Meyer of Interactive Software
Engineering, Inc. in 1987. Eiffel is a full object-oriented language that has an Ada-like syntax and operates in a UNIX envi-

Table 1. Object-oriented languages
Smalltalk-80

Objective C
C++
Java

Flavors
XLISP
LOOPS
CLOS

Object Pascal
Turbo Pascal
Eiffel

Ada 95

295



Table 2. Object-based languages

Alphard
CLU
Euclid
Gypsy
Mesa
Modula
Ada

ronment. Ada, as it was originally conceived in 1983, was not object-oriented in that it did not support inheritance and poly-
morphism. In 1995, an object-oriented version of Ada was released. Though object-oriented, Ada 95 continues to differ from
other object-oriented languages in its definition of a class in terms of types.

There are also languages that are referred to as object-based. A sample of object-based languages appears in Table 2. Ob-
ject-based languages differ from object-oriented languages ostensibly in their lack of inheritance capability. It should be noted
that although Ada 95 is object oriented, its predecessor, Ada, is object based.

OBJECT-ORIENTED SOFTWARE ENGINEERING

Life Cycle

Although the object-oriented languages are exciting developments, coding is not the primary source of problems in software de-
velopment. Requirements and design problems are much more prevalent and much more costly to correct. The focus on object-
oriented development techniques, therefore, should not be strictly on the programming aspects, but more appropriately on the
other aspects of software engineering. The promise object-oriented methodologies hold for attacking complexity during analy-
sis and design, and accomplishing analysis and design reuse is truly significant. If it is accepted that object-oriented develop-
ment is more than object-oriented coding, then a whole new approach, including life cycle, must be adopted (Booch, 1994).
The most widely accepted life cycle to date is the waterfall/structured life cycle (Lorenz, 1993). The waterfall organization
came into existence to stem the ad hoc approaches that had led to the software crisis first noted in the late 1960s. A version of
the waterfall life cycle is pictured in Figure 7. As shown, the process is sequential; activities flow in primarily one direction.
There is little provision for change and the assumption is that the system is quite clearly understood during the initial stages.
Unfortunately, any software engineering effort will inherently involve a great deal of iteration, whether it is scheduled or not.

ANALYSIS
\
SPECIFICATION
\
DESIGN
\
IMPLEMENTATION
\
TESTING

\

SYSTEM
INTEGRATION

\

MAINTENANCE

Figure 7. Waterfall life cycle.

296



Good designers have been described as practitioners who work at several levels of abstraction and detail simultaneously (Cur-
tis, 1989). The waterfall life cycle simply does not accommodate real iteration. Likewise, prototyping, incremental builds, and
program families are misfits. The waterfall/structured life cycle is also criticized for placing no emphasis on reuse and having
no unifying model to integrate the phases (Korson & McGregor, 1990).

The object-oriented approach begins with a model of the problem and proceeds with continuous object identification and
elaboration. It is inherently iterative and inherently incremental. Figure 8 illustrates a version of the water fountain life cycle
that has been used to describe the object-oriented development process (Henderson-Sellers & Edwards, 1990). The fountain
idea shows that the development is inherently iterative and seamless. The same portion of the system is usually worked on a
number of times, with functionality being added to the evolving system with each iteration. Prototyping and feedback loops
are standard. The seamlessness is accounted for in the lack of distinct boundaries during the traditional activities of analysis,
design, and coding. The reason for removing the boundaries is that the concept of object permeates; objects and their relation-
ships are the medium of expression for analysis, design, and implementation. There is also a switch of effort from coding to
analysis and an emphasis on data structure before function. Furthermore, the iterative and seamless nature of object-oriented
development makes the inclusion of reuse activities natural.

More recently, a life cycle that has both a macro and a micro view has been proposed to increase the manageability of ob-
ject-oriented development (Booch, 1994). The macro phases in Figure 9 are analysis, to discover and identify the objects; de-
sign, to invent and design objects; and implementation, to create objects. Built into each macro phase is a micro phase depict-
ing the iteration. This life cycle suggests Boehm’s Spiral Model (Boehm, 1988).

Object-Oriented Analysis (OOA) and Object-Oriented Design (OOD)

Since object-oriented technology is still relatively new, there are, as noted above, a number of approaches to object-oriented
analysis and design. Most of them use graphical representations, an idea that was likely inherited from structured methodolo-
gies. Object-oriented analysis builds on previous information modeling techniques, and can be defined as a method of analy-

(e

iplementatioy

Figure 8. Water fountain life cycle for object-oriented software de-
velopment. Figure 9. Iterative/incremental life cyle.

297



sis that examines requirements from the perspective of the classes and objects found in the vocabulary of the problem domain.
Analysis activities yield black-box objects that are derived from the problem domain. Scenarios are often used in object-ori-
ented approaches to help determine necessary object behavior. A scenario is a sequence of actions that takes place in the prob-
lem domain. Frameworks have become very useful in capturing an object-oriented analysis for a given problem domain and
making it reusable for related applications. Basically, a framework is a skeleton of an application or application subsystem im-
plemented by concrete and abstract classes. In other words, a framework is a specialization hierarchy with abstract superclass-
es that depicts a given problem domain. One of the drawbacks of all current object-oriented analysis techniques is their uni-
versal lack of formality.

During object-oriented design, the object focus shifts to the solution domain. Object-oriented design is a method of design
encompassing the process of object-oriented decomposition and a notation for depicting both logical and physical as well as
static and dynamic models of the system under design (Booch, 1994).

In both analysis and design, there is a strong undercurrent of reuse. Researchers in object technology are now attempting to
codify design patterns, which are a kind of reusable asset that can be applied to different domains. Basically, a design pattern
is a recurring design structure or solution that when cataloged in a systematic way can be reused and can form the basis of de-
sign communication (Gamma, et al., 1995).

OOD techniques were actually defined before OOA techniques were conceived. There is difficulty in identifying and char-
acterizing current OOA and OOD techniques because, as described above, the boundaries between analysis and design activi-
ties in the object-oriented model are fuzzy. Given that problem, the following descriptions provide an overview to some of the
OO0A and OOD techniques being used.

Meyer uses language as a vehicle for expressing design. His approach is really not classifiable as an OOD technique (Mey-
er, 1988). Booch’s OOD techniques extend his previous Ada work. He advocates a “round trip gestalt” process during which
objects are identified, semantics of the objects are identified, relationships are identified, implementation is accomplished, and
iteration occurs. Originally, he used class diagrams, class category diagrams, class templates, and object diagrams to record
design (Booch, 1991). More recently, he has taken ideas from other methods and woven them into his work. Behavior is de-
scribed with Harel state charts in conjunction with interaction or annotated object diagrams (Booch, 1994).

Wirfs-Brock’s OOD technique is driven by delegation of responsibilities. Class responsibility cards (CRCs) are used to
record classes responsible for specific functionality and collaborators with the responsible classes. The initial exploration of
classes and responsibilities is followed by detailed relationship analysis and implementation of subsystems (Wirfs-Brock,
1990).

Rumbaugh et al. use three kinds of models to describe a system: the object model, which is a static structure of the objects
in a system; the dynamic model, which describes the aspects of a system that change over time; and the functional model,
which describes the data value transformations within a system. Object diagrams, state diagrams, and data-flow diagrams are
used to represent the three models, respectively (Rumbaugh et al., 1991).

In their OOA technique, Coad and Yourdon (1991) advocate the following steps: find classes and objects, identify struc-
tures and relationships, determine subjects, define attributes, and define services, to determine a multilayer object-oriented
model. The layers correspond to the steps, namely, class and object layer, subject layer, structure layer, attribute layer, and
service layer, respectively. Their OOD technique is both multilayer and multicomponent. The layers are the same as those in
analysis. The components include problem domain, human interaction, task management, and data management.

Ivar Jacobson offers Objectory, an object-oriented software engineering method developed by Objective Systems in Swe-
den. Jacobson’s method has a strong focus on a particular kind of scenario referred to as a “use case.” The use cases become
the basis for the analysis model, which gives way to the design model when the use cases are formalized by interaction dia-
grams. The use cases also drive the testing in a testing phase, which Objectory makes explicit. Objectory is the most complete
industrial method to date (Jacobson, 1992).

There are also other published OOA and OOD techniques as well as variations of the above that are not listed here. In re-
cent years as the methods have been evolving, there has been considerable convergence. In late 1995, Booch, Rumbaugh, and
Jacobson joined forces and proposed the first draft of a Unified Method, which promises to add some welcome consensus and
stability (Booch, 1995).

Management Issues

As organizations begin to shift to object-oriented development techniques, the management activities that support software
development also necessarily have to change. A commitment to objects requires a commitment to change processes, re-
sources, and organizational structure (Goldberg & Rubin, 1995). The seamless, iterative, prototyping nature of object-oriented
development eliminates traditional milestones. New milestones have to be established. Also, some of the ways in which meas-
urements were made are less appropriate in an object-oriented context. LOC (lines of code) is definitely not helpful. Number
of classes reused, inheritance depth, number of class-to-class relationships, coupling between objects, number of classes, and

298



class size are more meaningful measurements. Most work in object-oriented metrics is relatively new, but references are be-
ginning to surface (Lorenz, 1993).

Resource allocation needs to be reconsidered as does team organization. Smaller development teams are suggested (Booch,
1994), as is cultivation of reuse experts. Incentives should be based on reuse, not LOC. An entirely new mind-set is required if
reuse is to really be operative. Libraries and application frameworks have to be supported and built, along with contracted ap-
plication software. Long-term investment strategies are imperative as well as the processes and commitment to evolve and
maintain these reuse assets.

Regarding quality assurance, typical review and testing activities are still essential, but their timing and definition must be
changed. For example, a walk-through could involve enacting a scenario of interacting objects proposed to effect some specif-
ic functionality. Testing of object-oriented systems is another area that needs to be more completely addressed. Release in
terms of a steady stream of prototypes requires a flavor of configuration management that differs from that which is being
used to control products generated using structured techniques.

Another management concern ought to be appropriate tool support. An object-oriented development environment is essen-
tial. Also needed are a browser for class library, an incremental compiler, debuggers that know about class and object seman-
tics, graphics support for design and analysis notation and reference checking, configuration management and version control
tools, and a database application that functions as a class librarian. Tools are now available but need to be evaluated based
upon the purpose, organization, and method chosen.

Estimates can also be problematic until there is object-oriented development history to substantiate proposed development
estimates of resources and cost. Cost of current and future reuse must be factored into the equation. Finally, management must
be aware of the risks involved in moving to an object-oriented approach. There are potential performance risks such as cost of
message passing, explosion of message passing, class encumbrance, paging behavior, dynamic allocation, and destruction
overhead. There are also start-up risks including acquisition of appropriate tools, strategic and appropriate training, and devel-
opment of class libraries.

OBJECT-ORIENTED TRANSITION

There are documented success stories, but there are also implicit recommendations. The transition needs to progress through
levels of absorption before assimilation into a software development organization actually occurs. This transition period can
take considerable time. Training is essential. Pilot projects are recommended. Combination of structured and object-oriented
approaches are not recommended. There is growing evidence that success requires a total object-oriented approach for at least
the following reasons: traceability improvement, reduction in significant integration problems, improvement in conceptual in-
tegrity of process and product, minimization of need for objectification and deobjectification, and maximization of the bene-
fits of object orientation (Berard, 1993).

THE FUTURE

In summary, object-oriented development is a natural outgrowth of previous approaches and has great promise for software
development in many application domains. Paraphrasing Maurice Wilkes in his landmark 29 year reprise of his 1967 ACM
Turing Lecture, “Objects are the most exciting innovation in software since the 70s” (Wilkes, 1996). Object-oriented develop-
ment is not, however, a panacea and has not yet reached maturity. The full potential of objects has not been realized. Yet,
whereas the future of object-oriented development cannot be defined, the predictions of the early 1990s (Winblad et al., 1990)
are already materializing. Class libraries and apptication frameworks are becoming readily available in the marketplace. Trans-
parent information access across applications and environments is conceivable. Environments in which users can communi-
cate among applications and integrated object-oriented multimedia tool kits are emerging. It is likely that the movement will
continue to gain in popularity and techniques will mature significantly as experience increases. It is also likely that object ori-
entation will eventually be replaced or absorbed into an approach that works at an even higher level of abstraction. Of course,
these are just predictions. In the not too distant future, talk about objects will no doubt be passé, but for now there is much to
generate genuine enthusiasm.

BIBLIOGRAPHY
E. V. Berard, Essays on Object-Oriented Sofiware Engineering, Vol. 1, Prentice-Hall, Englewood Cliffs, New Jersey, 1993.

B. Boehm, “A Spiral Model of Software Development and Enhancement,” in Thayer, R., ed., Software Engineering Project Management,
IEEE Computer Society Tutorial, Catalog Number EH0263-4, 1988.

299



G. Booch, “Object-Oriented Design,” Ada Letters, 1, 3, 64-76 (March—-April, 1982).

G. Booch, Object-Oriented Design with Applications, Benjamin/Cummings, Redwood City, California, 1991.

G. Booch, Object-Oriented Analysis and Design with Applications, Addison-Wesley, Reading, Massachusetts, 1994.
G. Booch and J. Rumbaugh, Introduction to the United Method, OOPSLA 95 Tutorial Notes, Austin, Texas, 1995.

T. Budd, An Introduction to Object-Oriented Programming, Addison-Wesley, Reading, Massachusetts, 1991.

P. Coad and J. Nicola, Object-Oriented Programming, Prentice-Hall, Englewood Cliffs, New Jersey, 1993.

P. Coad and E. Yourdon, Object-Oriented Analysis, 2nd ed., Prentice-Hall, Englewood Cliffs, New Jersey, 1991.

P. Coad and E. Yourdon, Object-Oriented Design, Prentice-Hall, Englewood Cliffs, New Jersey, 1991.

B. J. Cox, Object-Oriented Programming: An Evolutionary Approach, Addison-Wesley, Reading, Massachusetts, 1986.

B. Curtis, “. . . But You Have to Understand. This Isn’t the Way We Develop Software at Our Company,” MCC Technical Report No. STP-
203-89, Microelectronics and Computer Technology Corporation, Austin, Texas, 1989.

M. Fowler, 4 Comparison of Object-Oriented Analysis and Design Methods, OOPSLA “95 Tutorial Notes, Austin, Texas, 1995.

L. E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design Patterns, Addison-Wesley, Reading, Massachusetts, 1995.

A. Goldberg and P. Robson, Smalltalk-80: The Language and lIts Implementation, Addison-Wesley, Reading, Massachusetts, 1983.

A. Goldberg and K. Rubin, Succeeding with Objects, Addison-Wesley, Reading, Massachusetts, 1995.

B. Henderson-Sellers and J. M. Edwards, “The Object-Oriented Systems Life Cycle,” CACM, 143-159 (Sept. 1990).

I. Jacobson, M. Christerson, P. Jonsson, and G. G. Overgaard, Object Oriented Software Engineering, Addison-Wesley, Reading, Massachu-
setts, 1992.

T. Korson and J. McGregor, “Understanding Object-Oriented: A Unifying Paradigm,” CACM, 41-60 (Sept. 1990).

M. Lorenz, Object-Oriented Software Development, Prentice-Hall, Englewood Cliffs, New Jersey, 1993.

B. Meyer, Object-Oriented Sofiware Construction, Prentice-Hall, Englewood Cliffs, New Jersey, 1988.

D. Monarchi and G. Puhr, “A Research Typology for Object-Oriented Analysis and Design,” CACM, 35-47 (Sept. 1992).

R. Pressman, Sofiware Engineering: A Practitioner s Approach, 3rd eEd., McGraw-Hill, New York, 1992.

J. Rumbaugh, M. Blaha, W. Premerlani, F. Eddy, and W. Lorensen, Object-Oriented Modeling and Design, Prentice-Hall, Englewood Cliffs,
New Jersey, 1991.

S. Shlaer and S. J. Mellor, Object-Oriented Systems Analysis: Modeling the World in Data, Yourdon Press—Prentice-Hall, Englewood Cliffs,
New Jersey, 1988.

M. Wilkes, “Computers Then and Now—Part 2,” Invited Talk, ACM Computer Science Conference, Philadeiphia, Pennsylvania, 1996.

A. L. Winblad, S. D. Edwards, and D. R. King, Object-Oriented Software, Addison-Wesley, Reading, Massachusetts, 1990.

R. Wirfs-Brock, B. Wilkerson, and L. Wiener, Designing Object-Oriented Software, Prentice-Hall, Englewood Cliffs, New Jersey, 1990.

300



