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1. INTRODUCTION

With the massive reduction in the cost of microprocessor and semiconductor chips and the large increase in microprocessor per-
formance over the last few years, real-time and distributed real-time microcomputer-based systems are a very cost-effective so-
lution to many problems. Nowadays, more and more commercial, industrial, military, medical, and consumer products are mi-
crocomputer based and either software controlled or have a crucial software component to them. This paper presents an
overview of the design of concurrent systems, as well as an important category of concurrent systems, namely real-time systems.

A characteristic of all real-time systems is that of concurrent processing; that is, many activities occurring simultaneously
whereby, frequently, the order of incoming events is not predictable. Consequently, as real-time systems deal with several con-
current activities, it is highly desirable for a real-time system to be structured into concurrent tasks (also known as concurrent
processes).

This paper starts by providing an overview of concurrent processing concepts in Section 2. In Section 3, run-time support
for concurrent and real-time systems is briefly discussed. Section 4 presents an overview of concurrent and real-time design
methods. With this background, an overview of a modern design method for concurrent systems, including distributed and
real-time systems, is given in Section 5. The COMET method [Gomaa 2000] integrates object-oriented and concurrent pro-
cessing concepts, and uses the Unified Modeling Language (UML) notation.

2. CONCURRENT PROCESSING CONCEPTS

This section describes the concepts of the concurrent task (process), and the communication and synchronization between co-
operating tasks. For more information, refer to Andrews 1991, Bacon 1997, Magee and Kramer 1999, Silberschatz and Galvin
1998, and Tanenbaum 1992.

2.1. Concurrent Tasks

A concurrent task (also known as a concurrent process) represents the execution of a sequential program or sequential compo-
nent of a concurrent program. A concurrent system consists of several tasks executing in parallel. Each task deals with one se-
quential thread of execution. Concurrency in a software system is obtained by having multiple asynchronous tasks, running at
different speeds. From time to time, the tasks need to communicate and synchronize their operations with each other. The con-
current tasking concept has been applied extensively to the design of operating systems, real-time systems, interactive sys-
tems, distributed systems, parallel systems, and simulation applications [Bacon 1997].

Consider the case of a robot system that controls up to four robot arms. Typically, there is one robot program to control the
operations of one robot arm. Thus, each executing robot program is considered a software task.

In most concurrent systems, the tasks need to coordinate their activities. Two ways in which this procedure can be achieved
are mutual exclusion and task synchronization.

2.2. Mutual Exclusion

Mutual exclusion is required when only one task at a time may have exclusive access to a resource. The part of a program that
a task executes when it has exclusive access to a resource is referred to as its critical section or critical region. An application

Part of this material contained in this article was extracted from H. Gomaa, Designing Concurrent, Distributed and Real-Time Applications with UML. Addi-
son-Wesley Object Technology Series, ISBN 0-201-65793-7, 2000 © 2000 Hassan Gomaa. Reprinted by permission of Addison-Wesley Longman.
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of mutual exclusion is robot entry into a “collision zone.” Collision could occur if more than one robot is allowed to move into
the collision zone at the same time. To prevent this, robot entry into the collision zone is made mutually exclusive. For exam-
ple, four robot tasks are performing independent assembly operations. However, there is a collision zone where robot arms
could potentially collide.

The mutual exclusion problem may be solved by using semaphores [Andrews 1991, Bacon 1997]. Two operations are allowed
on binary semaphores, P(s) and V(s), where (s) is the semaphore. The P operation is a potential wait operation. This operation is
executed by a task when it wishes to enter the critical section. If the semaphore is set to 1 (meaning that no task is in the critical
section), then the semaphore is decremented and the task is allowed to enter the critical section. If the semaphore is set to 0 when
the P operation is executed by task A, this setting means that another task, say B, is in the critical section. Task A is suspended
until task B signals that it is leaving the critical section by performing a V operation. This results in task A being allowed to en-
ter the critical section. An example of this approach for a robot task that wishes to enter the collision zone follows:

Perform operations outside collision zone.

P (Collision_Zone_Semaphore)
~ Perform mutually exclusive operations in collision zone
V (Collision_Zone_Semaphore)

Perform more operations outside collision zone.

2.3. Synchronization of Tasks

Task Synchronization is required when one task, typically a producer, wishes to signal another, the consumer, to notify it that
some event has occurred. For example, the producer robot moves a part into position and then signals the event Part_Ready.
The consumer robot, which is suspended waiting for the signal, is reactivated so that it can move to the part and pick it up.

Events may be used to synchronize the operations of two tasks. The producer task can perform a signal function as follows:
Signal (E), which signals that an event (E) has taken place. The consumer task may perform a Wait (E), which suspends the
task until the event has been signaled by the producer. If the event has already been signaled, then the task is not suspended.

An example of using events for synchronizing two robot systems is now given. A pick-and-place robot is to bring a part to
a robot that is to drill four holes in it. On completion, the pick-and-place robot is to move the part away.

The pick-and-place robot A moves the part into position and then signals the event Part_Ready. The drilling robot B is
awakened, moves to the workplace and drills the holes. On completion, Robot B signals a second event, Part_Completed,
which is waited on by A. After being awakened, Robot A removes the part. Each robot program is in a loop, as the robots will
repetitively perform their tasks. The solution is as follows:

Robot A
WHILE Work_Available DO

Pick up part

Move Part to Workplace
Release part

Move to safe position
Signal (Part_Ready)
Wait (Part_Completed)
Pick up part

Remove from Workplace
END

Robot B:
WHILE Work_ Available DO

Wait (Part_Ready)
Move to Workplace

Drill Four holes

Move to safe position
Signal (Part_Completed)
END
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2.4. Message Communication

Concurrent tasks may communicate with each other using messages, which provide a general method of intertask communi-
cation [Andrews 1991, Bacon 1997]. Message communication is used when data needs to be passed between two tasks. Thus
Signal and Wait event commands may be packaged into messages. For example, the producer task P sends a message M to the
consumer C. The consumer task C may request to receive a message from the producer. If a message is already available, the
consumer will receive it and continue processing; otherwise, the consumer is suspended until the message arrives.

Two types of message communication are possible: loosely couple message communication and tightly couple message
communication. With loosely coupled message communication (also referred to as asynchronous message communication),
the producer sends the message to the consumer and then continues processing. In this case, a message queue could build up
between the producer and the consumer. There are two forms of tightly coupled message communication (also referred to as
synchronous message communication): tightly coupled message communication with reply and tightly coupled message com-
munication without reply. In the former case, the producer sends the message and then waits for a reply. When the consumer
receives the message, it will generate a reply and send it back to the producer. Both producer and consumer then continue pro-
cessing. With tightly coupled message communication without reply, the producer sends the message and then waits for ac-
ceptance of the message by the consumer. Tightly coupled message communication is known in Ada as the rendezvous. An ex-
ample of message communication is that of data that needs to be passed between robots, or between a robot and another
industrial system. For example, a vision system could pass part location data to a robot task.

As an example of message communication, consider the case in which a vision system has to inform a robot whether the
type of car body frame coming down a conveyor is a sedan or station wagon. The robot has a different program for each car
body type. In addition, the vision system has to send the robot information about the location and orientation of the car body
frame on the conveyor. Usually, this information is sent as an offset (i.e., relative position) from a point known to both sys-
tems, with the part identification and offset information being sent in a message from the vision system to the robot. A sensor
is used to indicate to the vision system that the car has arrived, which sets the external event signal Car_arrived. The robot in-
dicates that it has completed the welding operations it performs on the car by signaling the actuator Move_car, which results in
the car being moved away by the conveyor.

Vision System:

Wait (Car_arrived)

Take picture of car body

Identify car body

Determine location and orientation of car body

Send message (car model i.d., car body offset) to robot

Robot task:

Wait for message from vision system

Read message (car model i.d., car body offset)

Select welding program for car model

Execute welding program using offset for car position
Signal (Move_car)

3. RUN-TIME SUPPORT FOR CONCURRENT TASKS

Run-time support for concurrent processing may be provided by:

e Kernel of an operating system. This has the functionality to provide services for concurrent processing. In some mod-
ern operating systems, a microkernel provides minimal functionality to support concurrent processing, with most serv-
ices provided by system-level tasks.

* Run-time support system for a concurrent language.
® Threads package. Provides services for managing threads (lightweight processes) within heavyweight processes.

3.1. Language Support for Concurrent Tasks

With sequential programming languages, such as C, C++, Pascal, and Fortran, there is no support for concurrent tasks. To de-
velop a concurrent multitasked application using a sequential programming language, it is, therefore, necessary to use a kernel
or threads package.
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With concurrent programming languages, such as Ada and Java, the language supports constructs for task communication
and synchronization. In this case, the language’s runtime system handles task scheduling and provides the services and under-
lying mechanisms to support intertask communication and synchronization.

3.2. Real-Time Operating Systems

Much of the operating system technology for concurrent systems is also required for real-time systems. Most real-time oper-
ating systems support a kernel or microkernel, as described previously. However, real-time systems have special needs, many
of which relate to having predictable behavior. It is more useful to consider the requirements of a real-time operating system
than to provide an extensive survey of available real-time operating systems, because the list changes on a regular basis. Thus,
a real-time operating system must:

® Support multitasking.
e Support priority preemption scheduling. This means each task needs to have its own priority.
® Provide task synchronization and communication mechanisms.

e Provide a memory-locking capability for tasks. In hard real-time systems, it is usually the case that all concurrent tasks
are memory resident. This is to eliminate the uncertainty and variation in response time introduced by paging overhead.
This memory-locking capability allows all time-critical tasks with hard deadlines to be locked in main memory so they
are never paged out.

e Provide a mechanism for priority inheritance. When a task, task A, enters a critical section, its priority must be raised.
Otherwise, task A is liable to get preempted by a higher-priority task, which is then unable to enter its critical section be-
cause of task A; hence, the higher priority task is blocked indefinitely.

¢ Have a predictable behavior (for example, for task context switching, task synchronization, and interrupt handling).
Thus, there should be a predictable maximum response time under all anticipated system loads.

4. SURVEY OF DESIGN METHODS FOR CONCURRENT AND REAL-TIME SYSTEMS

For the design of concurrent and real-time systems, a major contribution came in the late seventies with the introduction of the
MASCOT notation [Simpson 1979] and later the MASCOT design method [Simpson 1986]. Based on a data flow approach,
MASCOT formalized the way tasks communicate with each other, via either channels for message communication or pools
(information hiding modules that encapsulate shared data structures).

The 1980s saw a general maturation of software design methods, and several system design methods were introduced. Par-
nas’s work with the Naval Research Lab, in which he explored the use of information hiding in large-scale software design, led
to the development of the Naval Research Lab (NRL) Software Cost Reduction Method [Parnas, Clements, and Weiss 1984].
Work on applying structured analysis and structured design to concurrent and real-time systems led to the development of
Real-Time Structured Analysis and Design (RTSAD) [Ward and Mellor 1985, Hatley and Pirbhai 1988] and the Design Ap-
proach for Real-Time Systems (DARTS) [Gomaa 1984] methods.

Another software development method to emerge in the early 1980s was Jackson System Development (JSD) [Jackson
1983]. JSD was one of the first methods to advocate that the design should model reality first and, in this respect, predated the
object-oriented analysis methods. The system is considered a simulation of the real world and is designed as a network of con-
current tasks, where each real-world entity is modeled by means of a concurrent task. JSD also defied the then-conventional
thinking of top-down design by advocating a middle-out behavioral approach to software design. This approach was a precur-
sor of object interaction modeling, an essential aspect of modern object-oriented development.

The early object-oriented analysis and design methods emphasized the structural aspects of software development through
information hiding and inheritance but neglected the dynamic aspects. A major contribution by the Object Modeling Technique
[Rumbaugh et al. 1991] was to clearly demonstrate that dynamic modeling was equally important. In addition to introducing the
static modeling notation for the object diagrams, OMT showed how dynamic modeling could be performed with state charts (hi-
erarchical state transition diagrams originally conceived by Harel [Harel 1998, Harel et al. 1998]) for showing the state-de-
pendent behavior of active objects and with sequence diagrams to show the sequence of interactions between objects.

The CODARTS (Concurrent Design Approach for Real-Time Systems) method [Gomaa 1993] built on the strengths of ear-
lier concurrent design, real-time design, and early object-oriented design methods. These included Parnas’s NRL Method,
Booch Object-Oriented Design [Booch 1994], JSD, and the DARTS method by emphasizing both information hiding module
structuring and task structuring. In CODARTS, concurrency and timing issues are considered during task design and informa-
tion hiding issues are considered during module design.
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Octopus [Awad, Kuusela, and Ziegler 1996] is a real-time design method based on use cases, static modeling, object inter-
actions, and statecharts. By combining concepts from Jacobson’s use cases with Rumbaugh’s static modeling and statecharts,
Octopus anticipated the merging of the notations that is now the UML. For real-time design, Octopus places particular empha-
sis on interfacing to external devices and on concurrent task structuring.

ROOM (Real-Time Object-Oriented Modeling) [Selic, Gullekson, and Ward 1994] is a real-time design method that is
closely tied in with a CASE (Computer Assisted Software Engineering) tool called ObjecTime. ROOM is based on actors,
which are active objects that are modeled using a variation on state charts called ROOMcharts. A ROOM model, which has
been specified in sufficient detail, may be executed. Thus, a ROOM model is operational and may be used as an early proto-
type of the system.

Buhr and Casselman [1996] introduced an interesting concept called the use case map (based on the use case concept) to
address the issue of dynamic modeling of large-scale systems. Use case maps consider the sequence of interactions between
objects (or aggregate objects in the form of subsystems) at a larger-grained level of detail than do collaboration diagrams.

For UML-based real-time software development, Douglass [1999, 2004] has provided a comprehensive description of how
UML can be applied to real-time systems. His 2004 book describes applying the UML notation to the development of real-
time systems. The 1999 book is a detailed compendium covering a wide range of topics in real-time system development, in-
cluding safety-critical systems, interaction with real-time operating systems, real-time scheduling, behavioral patterns, real-
time frameworks, debugging, and testing.

5. A MODERN SOFTWARE DESIGN METHOD FOR CONCURRENT AND REAL-TIME SYSTEMS

5.1. Introduction

Most books on object-oriented analysis and design only address the design of sequential systems or omit the important design
issues that need to be addressed when designing real-time and distributed applications [Gomaa 1993, Bacon 1997]. It is essen-
tial to blend object-oriented concepts with the concepts of concurrent processing in order to successfully design these applica-
tions. This paper describes some of the key aspects of the COMET method for designing real-time and distributed applica-
tions. COMET integrates object-oriented and concurrent processing concepts and uses the Unified Modeling Language
(UML) notation (see article on Unified Modeling Language). It also describes the decisions made on how to use the UML no-
tation to address the design of large-scale concurrent, distributed, and real-time applications. Examples are given from a pump
monitoring and control system.

5.2. The COMET Method

COMET is a concurrent object modeling and architectural design method for the development of concurrent applications, in
particular distributed and real-time applications [Gomaa 2000]. As the UML is now the standardized notation for describing
object-oriented models [Booch et al. 1999, Rumbaugh et al. 2004, Jacobson et al. 2000], the COMET method uses the UML
notation throughout.

The COMET object-oriented software life cycle is highly iterative. In the requirements modeling phase, a use case model is
developed in which the functional requirements of the system are defined in terms of actors and use cases.

In the analysis modeling phase, static and dynamic models of the system are developed. The static model defines the struc-
tural relationships among problem domain classes. Object structuring criteria are used to determine the objects to be consid-
ered for the analysis model. A dynamic model is then developed in which the use cases from the requirements model are re-
fined to show the objects that participate in each use case and how they interact with each other. In the dynamic model,
state-dependent objects are defined using state charts.

In the design modeling phase, an architectural design model is developed. Subsystem structuring criteria are provided to
design the overall software architecture. For distributed applications, a component-based development approach is taken, in
which each subsystem is designed as a distributed, self-contained component. The emphasis is on the division of responsibili-
ty between clients and servers, including issues concerning the centralization versus distribution of data and control, and the
design of message communication interfaces, including synchronous, asynchronous, brokered, and group communication.
Each concurrent subsystem is then designed in terms of active objects (tasks) and passive objects. Task communication and
synchronization interfaces are defined. The performance of real-time designs is estimated using an approach based on rate
monotonic analysis [SEI 1993].

Distinguishing features of the COMET method are the emphasis on:
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® Structuring criteria to assist the designer at different stages of the analysis and design process: subsystems, objects, and
concurrent tasks.

® Dynamic modeling, both object collaboration and state charts, describing in detail how object collaborations and statec
harts relate to each other.

* Distributed application design, addressing the design of configurable distributed components and intercomponent mes-
sage communication interfaces.

¢ Concurrent design, addressing in detail task structuring and the design of task interfaces.
® Performance analysis of real-time designs using real-time scheduling.

COMET emphasizes the use of structuring criteria at different stages in the analysis and design process. Object structuring
criteria are used to help determine the objects in the system, subsystem structuring criteria are used to help determine the sub-
systems, and concurrent task structuring are used to help determine the tasks (active objects) in the system. UML stereotypes
are used throughout to clearly show the use of the structuring criteria.

The UML notation supports requirements, analysis, and design concepts. The COMET method separates requirements,
analysis, and design activities. Requirements modeling addresses defining the functional requirements of the system. COMET
differentiates analysis from design as follows. Analysis is breaking down or decomposing the problem so that it is understood
better. Design is synthesizing or composing (putting together) the solution. These activities are now described in more detail.

5.3. Requirements Modeling with UML

In the requirements model, the system is considered as a black box. A use case model is developed in which the functional re-
quirements of the system are defined in terms of use cases and actors. This section describes the use of actors in real-time ap-
plications.

There are several variations on how actors are modeled [Jacobson 1992, Booch 1998, Fowler 1999, Schneider and Winters
1998]. An actor is very often a human user. In many information systems, humans are the only actors. It is also possible in in-
formation systems for an actor to be an external system. In real-time and distributed applications, an actor can also be an ex-
ternal I/O device or a timer. External I/0 devices and timer actors are particularly prevalent in real-time embedded systems, in
which the system interacts with the external environment through sensors and actuators.

A human actor may use various /O devices to physically interact with the system. In such cases, the human is the actor and
the I/0 devices are not actors. In some case, however, it is possible for an actor to be an I/O device. This can happen when a
use case does not involve a human, as often happens in real-time applications.

An actor can also be a timer that periodically sends timer events to the system. Periodic use cases are needed when certain
information needs to be output by the system on a regular basis. This is particularly important in real-time systems, although it
can also be useful in information systems. Although some methodologists consider timers to be internal to the system, it is
more useful in real-time application design to consider timers as logically external to the system and to treat them as primary
actors that initiate actions in the system. An example of a use case model from the pump monitoring and control system is giv-
en in Figure 1. ‘

5.4. Analysis Modeling with UML

This section describes some of the interesting aspects of COMET for analysis modeling. In particular, this section describes
static modeling of the system context, stereotypes to represent object structuring decisions made by the analyst, and consisten-
cy checking between multiple views of a dynamic model. .

5.4.1. Static Modeling

For real-time applications, it is particularly important to understand the interface between the system and the external environ-
ment, which is referred to as the system context. In structured analysis [Yourdon 1989], the system context is shown on a sys-
tem context diagram. The UML notation does not explicitly support a system context diagram. However, the system context
may be depicted using either a static model or a collaboration model [Douglass 1999]. A system context class diagram pro-
vides a more detailed view of the system boundary than a use case diagram.

Using the UML notation for the static model, the system context is depicted showing the system as an aggregate class with
the stereotype «system», and the external environment is depicted as external classes to which the system has to interface
(Figure 2). External classes are categorized using stereotypes. An external class can be an «external input device», an «exter-
nal output device», an «external I/O device», an «external user», an «external system», or an «external timer». For a real-time
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system, it is desirable to identify low-level external classes that correspond to the physical /O devices with which the system
has to interface. These external classes are depicted with the stereotype «external I/O device».

An example of a system context class diagram from the pump Monitoring and control system is given in Figure 2.

During the analysis modeling phase, static modeling is also used for modeling data-intensive classes [Rumbaugh 1991].

5.4.2. Object Structuring

Object structuring criteria are provided to assist the designer in structuring a system into objects. Several object-based and ob-
ject-oriented analysis methods provide criteria for determining objects in the problem domain [Booch 1994, Coad and Your-
don 1991, Gomaa 1993, Jacobson 1992, Parnas et al. 1984, Shlaer and Mellor 1988]. The COMET object structuring criteria
build on these methods.

In object structuring, the goal is to categorize objects in order to group together objects with similar characteristics.
Whereas classification based on inheritance is an objective of object-oriented modeling, it is essentially tactical in nature.
Categorization, however, is a strategic classification. It is a decision to organize classes into certain groups because most
software systems have these kinds of classes and categorizing classes in this way helps us understand the system we are to
develop.

UML stereotypes are used to distinguish among the different kinds of application classes. A stereotype is a subclass of an
existing modeling element, in this case an application class, which is used to represent a usage distinction, in this case the kind
of class. A stereotype is depicted in guillemets, e.g., «interface». An instance of a stereotype class is a stereotype object, which
can also be shown in guillemets. Thus, an application class can be categorized as an «entity» class, which is a persistent class
that stores data; an «interface» class, which interface to the external environment; a «control» class, which provides the over-
all coordination for the objects that participate in a use case; or an «application logic» class, which encapsulates algorithms
separately from the data being manipulated.

Real-time systems will have many device interface classes to interface to the various sensors and actuators. They will also
have complex, state-dependent control classes because these systems are highly state dependent.

5.4.3. Dynamic Modeling

For concurrent, distributed, and real-time applications, dynamic modeling is of particular importance. UML does not empha-
size consistency checking between multiple views of the various models. Nevertheless, during dynamic modeling, it is impor-
tant to understand how the finite-state machine model, depicted using a state chart [Harel 1988, Harel and Gary 1996, Harel
and Politi 1998] that is executed by a state-dependent control object, and relates to the interaction model, which depicts the in-
teraction of this object with other objects.

State-dependent dynamic analysis addresses the interaction among objects that participate in state-dependent use cases. A
state-dependent use case has a state-dependent control object, which executes a state chart, providing the overall control and
sequencing of the use case. The interaction among the objects that participate in the use case is depicted on a collaboration di-
agram or sequence diagram.

The state chart needs to be considered in conjunction with the collaboration diagram. In particular, it is necessary to con-
sider the messages that are received and sent by the control object, which executes the state chart. An input event into the con-
trol object on the collaboration diagram must be consistent with the same event depicted on the state chart. The output event
(which causes an action, enable or disable activity) on the state chart must be consistent with the output event shown on the
collaboration diagram.

An example of the collaboration diagram for the control pump use case is given in Figure 3, and the state chart for the
Pump Control object is shown in Figure 4.

5.5. Design Modeling

This section describes some of the interesting aspects of COMET for design modeling. In particular, this section describes the
consolidation of collaboration diagrams to synthesize an initial software design, subsystem structuring using packages, dis-
tributed application design, concurrent task design, and the design of connectors using monitors.

5.5.1. The Transition from Analysis to Design

In order to transition from analysis to design, it is necessary to synthesize an initial software design from the analysis car-
ried out so far. In the analysis model, a collaboration diagram is developed for each use case. The consolidated collabora-
tion diagram is a synthesis of all the collaboration diagrams developed to support the use cases. The consolidation per-
formed at this stage is analogous to the robustness analysis performed in other methods [Jacobson 1992, Rosenberg and
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Scott 1999]. These other methods use the static model for robustness analysis, whereas COMET emphasizes the dynamic
model, as this addresses the message communication interfaces, which are crucial in the design of real-time and distributed
applications.

The consolidated collaboration diagram, which depicts the objects and messages from all the use-case-based collabora-
tion diagrams, can get very large for a large system and thus it may not be practical to show all the objects on one diagram.
This problem is addressed by developing a consolidated collaboration diagram for each subsystem, and developing a high-
er-level subsystem collaboration diagram to show the dynamic interactions between subsystems on a subsystem collabora-
tion diagram, which depicts the overall software architecture, as shown in Figure 5. The structure of an individual subsys-
tem is then depicted on a consolidated collaboration diagram, which shows all the objects in the subsystem and their
interconnections.

5.5.2. Software Architecture Design

During software architecture design, the system is broken down into subsystems and the interfaces between the subsystems
are defined [Shaw and Garlan 1996]. A system is structured into subsystems, which contain objects that are functionally de-
pendent on each other. The goal is to have objects with high coupling among each other in the same subsystem, whereas ob-
jects that are weakly coupled are in different subsystems. A subsystem can be considered a composite or aggregate object that
contains the simple objects that compose that subsystem.

5.5.3. Concurrent Collaboration Diagrams

In the UML notation, an active object or task is depicted using a thick outline for the object box. An active object has its own
thread of control and executes concurrently with other objects. This is in contrast to a passive object, which does not have a
thread of control. _

A passive object only executes when another object (active or passive) invokes one of its operations. In this paper, we refer
to an active object as a task and a passive object as an object. Tasks are depicted on concurrent collaboration diagrams, which
depict the concurrency aspects of the system [Douglass 2004]. On a concurrent collaboration diagram, a task is depicted as a
box with thick black lines, whereas a passive object is depicted as a box with thin black lines. In addition, decisions are made
about the type of message communication between tasks: asynchronous or synchronous, with or without reply.

5.5.4. Architectural Design of Distributed Real-Time Systems

Distributed real-time systems execute on geographically distributed nodes supported by a local or wide area network. With
COMET, a distributed real-time system is structured into distributed subsystems, where a subsystem is designed as a config-
urable component and corresponds to a logical node. A subsystem component is defined as a collection of concurrent tasks
executing on one logical node. As component subsystems potentially reside on different nodes, all communication between

<<control
subsystem>>
: PumpSubsystem

pump
Control
Status (status)

<<server statusRequest <<user interface
subsystem>> - subsystem>>
: PumpStatusServer — : Operatorinterface
statusResponse

Figure 5. Distributed software architecture.
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Figure 6. Distributed system configuration.

component subsystems must be restricted to message communication. Tasks in different subsystems may communicate with
each other using several different types of message communication (Figure 5) including asynchronous communication, syn-
chronous communication, client/server communication, group communication, brokered communication, and negotiated
communication. The configuration of the distributed real-time system is depicted on a deployment diagram, as shown in Fig-
ure 6.

3.5.5. Task Structuring

During the task structuring phase, each subsystem is structured into concurrent tasks and the task interfaces are defined. Task
structuring criteria are provided to assist in mapping an object-oriented analysis model of the system to a concurrent tasking
architecture. Following the approach used for object structuring, stereotypes are used to depict the different kinds of tasks.
Stereotypes are also used to depict the different kinds of devices the tasks interface with. During task structuring, if an object
in the analysis model is determined to be active, then it is categorized further to show its task characteristics. For example, an
active «I/O device interface» object is considered a task and categorized as one of the following: an «asynchronous I/O device
interface» task, a «periodic I/O device interface» task, a «passive I/O device interface» task, or a «resource monitor» task.
Similarly, an «external input device» is classified, depending on its characteristics, into an «asynchronous input device» or
«passive input device».

An asynchronous I/O device interface task is needed when there is an asynchronous 1/0 device with which the system has
to interface. For each asynchronous 1/0 device, there needs to be an asynchronous I/0 device interface task to interfzce with
it. The asynchronous I/O device interface task is activated by an interrupt from the asynchronous device.

Whereas an asynchronous I/O device interface task deals with an asynchronous I/O device, a periodic I/O device interface
task deals with a passive I/O device, in which the device is polled on a regular’basis. In this situation, the activation of the task
is periodic but its function is I/O related. The periodic I/O device interface task is activated by a timer event, performs an I/O
operation, and then waits for the next timer event.

An example of a task architecture for the pump monitoring and control system is given in Figure 7.

5.5.6. Detailed Software Design

In this step, the internals of composite tasks that contain nested objects are designed, detailed task synchronization issues are
addressed, connector classes are designed that encapsulate the details of intertask communication, and each task’s internal
event sequencing logic is defined. An example of the detailed design of a composite task is given in Figure 8.
If a passive class is accessed by more than one task, then the class’s operations must synchronize the access to the data it en-
capsulates. Synchronization is achieved using the mutual exclusion or multiple readers and writers algorithms [Bacon 1997].
Connector classes encapsulate the details of intertask communication, such as loosely and tightly coupled message com-
munication. Some concurrent programming languages such as Ada and Java provide mechanisms for intertask communication
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Figure 7. Pump subsystem, task architecture.

and synchronization. Neither of these languages supports loosely coupled message communication. In order to provide this
capability, it is necessary to design a message queue connector class, which encapsulates a message queue and provides oper-
ations to access the queue. A connector is designed using a monitor, which combines the concepts of information hiding and
task synchronization [Bacon 1997, Magee and Kramer 1999]. These monitors are used in a single processor or multiprocessor
system with shared memory. Connectors may be designed to handle loosely coupled message communication, tightly coupled
message communication without reply, and tightly coupled message communication with reply.

6. PERFORMANCE ANALYSIS OF REAL-TIME DESIGNS

Performance analysis of software designs is particularly important for real-time systems. The consequences of a real-time sys-
tem failing to meet a deadline can be catastrophic.

The quantitative analysis of a real-time system design allows the early detection of potential performance problems. The
analysis is for the software design conceptually executing on a given hardware configuration with a given external workload
applied to it. Early detection of potential performance problems allows alternative software designs and hardware configura-
tions to be investigated.

In COMET, performance analysis of software designs is achieved by applying realtime scheduling theory. Real-time sched-
uling is an approach that is particularly appropriate for hard real-time systems that have deadlines that must be met [Gomaa
1993, SEI 1993]. With this approach, the real-time design is analyzed to determine whether it can meet its deadlines.

A second approach for analyzing the performance of a design is to use event sequence analysis and to integrate this with
real-time scheduling theory. Event sequence analysis considers scenarios of task collaborations and annotates them with the
timing parameters for each of the tasks participating in each collaboration, in addition to system overhead for inter-object
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communication and context switching. The equivalent period for the active objects in the collaboration is the minimum inter-
arrival time of the external event that initiates the collaboration.

7. CONCLUSIONS

This paper has described concepts and methods for concurrent and real-time systems design. The concept of a concurrent task,
as well as the basic mechanisms for intertask communication and synchronization, have been described.

When designing concurrent and real-time systems, it is essential to blend object-oriented concepts with the concepts of
concurrent processing. This paper has described some of the key aspects of the COMET method for designing concurrent and
real-time systems, which integrates object-oriented and concurrent processing concepts and uses the UML notation.

With the proliferation of low-cost workstations and personal computers operating in a networked environment, the interest
in designing concurrent systems, particularly real-time and distributed systems, is likely to grow rapidly in the next few years.
Furthermore, with the growing need for reusable designs, design methods for software product lines are likely to be of in-
creasing importance for future real-time systems [Gomaa 2004].
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