Software Design: An Introduction

David Budgen

1. The Role of Software Design

A question that should be asked (and preferably
answered!) at the beginning of an overview paper such
as this, is

What exactly is the purpose of design?

and the answer that we will be assuming is along the
lines of

“To produce a workable (implementable) solution
to a given problem.”

where in our context, the eventual “solution” involves
producing an artifact that will be in the form of
software.

This end goal is one that we need to keep in mind
in seeking to provide a concise review of some of the
many factors and issues that are involved in designing
software-based systems. We also need to remember
the corollary to this: that the key measure of the
appropriateness of any solution is that of fitness for
purpose.

The significant characteristic of design as a prob-
lem-solving approach is that there is rarely (indeed,
almost never) only one solution to a problem. So we
cannot hope to identify some systematic way of find-
ing the answer, as occurs in the physical and mathe-
matical sciences. Instead, the designer needs to work
in a creative manner to identify the properties required
in the solution and then seek to devise a structure that
possesses them.

This characteristic can be illustrated by a very sim-
ple example of a design task that will be familiar to
many, and which is based upon that major trauma of
life: moving house! When we move to a new house or
apartment, we are faced with a typical design problem
in deciding where our furniture is to be placed. We
may also be required to assist the removal company by
supplying them with an abstract description of our
intentions.

There are of course many ways in which furniture
can be arranged within a house or apartment. We need
to decide in which room each item needs to be placed,
perhaps determined chiefly by functionality, and then
to decide exactly where it might go in the room. We

209

might choose to focus our attention on getting a good
balance of style in one room at the expense of another.
We also need to consider the constraints imposed by
the configuration of the house, so that furniture does
not block doors or windows, and power outlets remain
accessible.

So this simple example exhibits all of the main
characteristics that are to be found in almost all design
problems [1]: no single “right” solution; many factors
and constraints to be balanced in choosing a solution;
no one measure of “quality;” and no particular process
that can ensure that we can even identify an acceptable
solution!

1.1 The software design process

An important task for a designer is to formulate
and develop some form of abstract design model that
represents his or her ideas about a solution. Accepting
that these activities that underpin the design process
are creative ones, the next question that should be
asked is why is it that the task of designing software
seems to be even more intractable and less well under-
stood than other forms of design? In [2], Fred Brooks
has suggested that some software properties that con-
tribute to this include:

e The complexity of software, with no two parts
ever being quite alike, and with a process or
system having many possible states during
execution.

¢ The problem of conformity that arises
because of the very pliable nature of soft-
ware, with software designers being expected
to tailor software around the needs of hard-
ware, of existing systems, or to meet other
sources of “standards.”

"o The (apparent) ease of changeability, leading
to constant requirements for change from
users, who fail to appreciate the true costs
implied by changes.

e The invisibility of software so that our
descriptions of design ideas lack any visual
link to the form of the end product, and hence
are unable to help with comprehension in the
same way as usually occurs with descriptions
of more physical structures.



Empirical studies of the activities involved in
designing software [3, 4, 5] suggest that designers use
a number of techniques to reduce the effects of at least
some of these properties. These techniques include the
use of abstract “mental models” of their solutions,
which can then be mentally executed to simulate the
final system behaviour; reusing parts of previous solu-
tions; and making notes about future (detailed) inten-
tions as reminders for later stages in development.

Even where designers use a particular strategy to
help with developing a design model, they may still
deviate from this in an opportunistic manner either:

e to postpone making a decision where infor-
mation is not yet available; or

e to define components for which the informa-
tion is ready to hand, in anticipation of fur-
ther developments in the design.

The use of an opportunistic strategy should not be
taken to imply that design decisions are being made in
an unstructured manner. Rather, this corresponds to a
situation where the designer is making use of his or her
own experience and knowledge of the problem domain
to help adapt their problem-solving strategy, by identi-
fying those aspects of the solution that need to be
given most attention in the early stages [6].

Where a designer lacks experience, or is unfamiliar
with the type of problem being solved, then one means
of acquiring the experience of others is through the use
of a software design method. Clearly, to transfer all of
the different forms of knowledge that allow the de-
signer to use opportunistic development strategies
would be difficult, and design methods are therefore
limited to encouraging those forms of design practice
that can be prescribed in a procedural manner. To do
so, they provide:

1. A representation part consisting of a set of
notations that can be used to describe a
design model of the form that the method
seeks to develop.

2. A process part that describes how the model
is to be developed, expressed as a set of
steps, with each step representing a transfor-
mation of the model.

3. A set of heuristics that provide guidance on
how the process part should be modified or
adapted in order to cope with particular forms
of problem. These may consist of
alternative procedures, or may identify useful
“rules of thumb.”

One important point that should be made here:

210

Designing software is rarely a completely uncon-
strained process. The designer not only has to produce
a solution to a given problem but must also meet other
customer-imposed requirements. These constraints
may include the need to design a solution that can be
implemented in a particular programming language; or
one that will work within a particular environment or
operating system. Constraints therefore act to limit the
“solution space” that is available to the designer.

1.2 Design in the software development cycle

Constraints can affect the design process as well as
the form of the product. Designing software is not an
isolated and independent activity. The eventual system
as implemented will be expected to meet a whole set
of user needs (reminding us of the criterion of “fitness
for purpose”), where these needs are likely to have
been determined by some process of requirements
elicitation. The activities of analysis may be used to
identify the form of solution that will meet the user’s
needs, and the designer is then required to provide a
solution that conforms to that form. But of course, the
activities of all those tasks will interact, largely
because each activity is likely to lead to the identifica-
tion of inconsistencies between requirements and so-
lution, as ideas about the latter develop.

In a like manner, a designer must provide a set of
specifications for those who are to construct a system.
These need to be as clear, complete, and unambiguous
as possible, but of course it is likely that further needs
for change will be identified during implementation.
The designer also needs to “think ahead” in planning a
solution, since few software systems are used for long
without being altered and extended. So designing for
“maintenance” (a term that is usually a circumliocution
for “extensive further development”) is another factor
that may influence the form of the solution that is
adopted.

1.3 Design qualities

The features of a system that may be considered as
representative of our ideas of quality are apt to be de-
pendent upon the specific relationship that we have to
the system. We began by suggesting that fitness for
purpose was a paramount need of any system, but of
course, this is not an absolute measure of quality, nor
one that can be measured in any direct manner. Simply
doing the job correctly and within the resource con-
straints identified may not be enough to achieve fitness
for purpose. For example, if it is anticipated that a
system will be used for at least ten years,
involving modification at frequent intervals, then our
notions of fitness for purpose are very likely to incor-



porate ideas about how easily the structure of the
design will accommodate the likely changes. On the
other hand, if the need is for a solution that is
extremely short-term, but urgent, we may place much
more priority on getting a system that works than on
ensuring that it can also be modified and extended.

We do not have space here for a discussion of
quality factors, but a useful group to note are those
that are usually referred to as the “ilities”. The exact
membership of this group may depend upon context,
but the key ones are generally accepted as being reli-
ability, efficiency, maintainability, and usability. The
ilities can be considered to describe rather abstract and
“top-level” properties of the eventual system, and
these are not easily assessed from design information
alone.

Indeed, it has generally proved to be difficult to
apply any systematic form of measurement to design
information. While at the level of implementation,
basic code measurements (metrics) can at least be
gathered by counting lexical tokens [7], the variability
and the weak syntax and semantics of design notations
make such an approach much less suitable for designs.
More practical approaches to assessment at this level
of abstraction usually involve such activities as design
walk-throughs and reviews [8].

2 Describing Designs
2.1 Recording the design model: design viewpoints

In this section we examine some of the ways in
which a designer’s ideas about the design model can
be visualised by using various forms of description.

A major need for the designer is to be able to
select and use a set of abstractions that describe those
properties of the design model that are relevant to the
design decisions that need to be made. This is nor-
mally achieved by using a number of representation
forms, where such forms can be used for:

e documenting and exploring the details of the
- design model;

o explaining the designer’s ideas to others
(including the customer, the implementors,
managers, reviewers, and so forth);

o checking for consistency and completeness of
the design model. :

Because software design methods must rely upon
constructing a design model through a fixed set of
procedures, they each use an associated set of repre-
sentations to describe the properties identified through
following the procedures. This forms both a strength
and a weakness of design methods: The representa-

211

tions support the procedures by helping the designer
visualise those aspects of the design that are affected
by the procedures; but they may also limit the
designer’s vision. (Indeed, the act of deviating from
the procedures of a method in order to draw some
other form of diagram to help highlight some issue is a
good example of what was earlier termed opportunis-
tic behaviour on the part of a designer.)

The representations used in software design can be
grouped according to their purpose, since this identi-
fies the forms of property they seek to describe. One
such grouping, explored in some detail in [9] is based
upon the concept of the design viewpoint. A design
viewpoint can be regarded as being a “projection”
from the design model that displays certain of the
properties of the design model, as is shown schemati-
cally in Figure 1. The four viewpoints shown there are:

1. The .behavioural viewpoint, describing the
causal links between external events and sys-
tem activities during program execution.

2. The functional viewpoint, describing what
the system does.

3. The structural viewpoint, describing the
interdependencies of the constructional com-
ponents of the system, such as subprograms,
modules, and packages.

4. The data modelling viewpoint, describing the
relationships that exist between the data
objects used in the system.

2.2 Design representation forms

The three principal forms of description normally
used to realise the design viewpoints are text, dia-
grams, and mathematical expressions.

Textual descriptions

Text is of course widely used, both on its own, and
in conjunction with the other two forms. We can
structure it by using such forms as headings, lists
(numbered, bullets), and indentation, so as to reflect
the structure of the properties being described. How-
ever, text on its own does have some limitations, in
particular:

* The presence of any form of structure that is
implicitly contained in the information can
easily be obscured if its form does not map
easily onto lists and tables.

e Natural language is prone to ambiguity that
can only be resolved by using long and com-
plex sequences of text (as is amply demon-
strated by any legal document!)



Figure 1. Design viewpoints projected from the design model.

Diagrammatical descriptions

There is a long tradition of drawing diagrams to
provide abstractions in science and engineering, and
even though the “invisibility” factor makes the form of
these less intuitive when used to describe software,
they are still very useful. Since they will form the main
examples later in this section, we will not elaborate on
their forms here, other than to identify the following
properties as those that seem to characterise the more
widely used and “successful” forms:

e A small number of symbols. The symbols in a
diagram describe the “elements” that are
modelled by that form of diagram, and the
number of symbols is often in inverse pro

portion to the degree of abstraction provided.
Most of the widely used forms use only four
or five different symbols, including circles,
lines (arcs), and boxes.

A hierarchical structure. The complex inter-
actions that occur between software compo-
nents together with the abstract nature of the
components means that diagrams with many
different symbols are often very difficult to
understand. To help overcome this, many
diagrammatical forms allow the use of a hier-
archy of diagrams, with symbols at one level
being expanded at another level with the
same set of symbols, as is shown schemati-
cally in Figure 2.

Figure 2. Use of hierarchy in representations.

212



e Simplicity of symbol forms. Ideally, any
notation should be capable of being drawn
using a pencil and paper only (or a white-
board). Complicated symbols that require the
support of specialised diagram drawing soft-
ware can limit the ease with which designers
communicate their ideas to others.

Mathematical descriptions

Mathematical notations are of course ideally suited
to providing concise abstractions of ideas, and so it is
hardly surprising that these have been employed in
what we generally term the Formal Description Tech-
niques, or FDTs. However, the very terse nature of
mathematical descriptions, and the precision that they
provide, are not necessarily compatible with the
designer's need for abstraction, since they may
demand early resolution of issues that the designer
may wish to defer.

So far, FDTs have found their main use in specifi-
cation roles, especially in providing unambiguous de-
scriptions of requirements and descriptions of
detailed design features. In both of these roles, their
form makes them well suited to exploring the com-
pleteness and consistency of the specification,
although less so to its development [10].

2.3 Some examples of design representations

To conclude this section we provide some simple
examples of diagrammatical notations used for the
four design viewpoints. This is a very small selection
from the very large range of forms that have been pro-
posed and used (for a fuller survey, see reference °D.

Table 1. Design representations and viewpoints.

Table 1 provides a summary of some widely used rep-
resentations, the viewpoints that they provide, and the
related design properties that they describe. (It should
be noted that the conventions used in these notations
do vary between different groups of users.)

The Statechart

Statecharts provide a means of modelling the
behaviour of a system when viewed as a finite-state
machine, [11] while providing better scope for hierar-
chical decomposition and composition than is gener-
ally found in behavioural representation forms.

A state is denoted by a box with rounded corners
and directed arcs denote transitions. The latter are
labelled with a description of the event causing the
transition and, optionally, with a parenthesised condi-
tion. The hierarchy of states is shown by encapsulating
state symbols.

A description of the actions of an aircraft “entity”
within an air traffic control system is shown in Figure
3. Note that the short curved arc denotes the “default
initial state” that is entered when an instance of the
entity is added to the system. (For clarity, not all tran-
sitions have been labelled in this example.)

The Jackson Structure Diagram

This notation is very widely used under a variety of
names. Its main characteristic is that it can describe the
ordered structure of an “object” in terms of the three
classical structuring forms of sequence, selection and
iteration. For this particular example, we will show its
use for modelling functional properties, although it is
also used for modelling data structure and for
describing time-ordered behaviour.

Representation Form Viewpoints Design properties
Data-Flow Diagram Functional Information flow; dependency of operations on other operations.
(DFD)
Entity-Relationship Data modelling Static relationships between subprograms; decomposition into subprograms
Diagram (ERD) ’
Structure Chart Structural and Invocation hierarchy between subprograms; decomposition into subpro-
functional grams
Structure Diagram Functional, data Algorithm forms; sequencing of data components; sequencing of actions.
(Jackson) modelling, behav-
ioural
Pseudocode Functional Algorithm forms
State Transition Dia- Behavioural State model describing how events cause transitions in entities.
gram (STD)
Statechart Behavioural System-wide state model, including parallelism, hierarchy, and abstraction.

213



\(()n__(}round

ATC_System
' o In_Flight W
take-off
Cruising
Stacked
Landing
ApproaCh touch-down 3
9§ )

Figure 3. An example Statechart.

Figure 4 provides a simple functional description
of the (British) approach to making tea. Points to note
are:

e Each level is an expanded (and hence, less
abstract) description of a box in the level
above.

e Sequence is denoted by an ordered line of
boxes, selection by a set of boxes with circles
in the upper corner, and iteration by a box
with an asterisk in the upper corner.

e The structuring forms should not be mixed in
a group on a level. (Hence the action “put tea
in the pot” forms an abstraction within a se-
guence, and this is then expanded separately
as an iterated set of actions.)

The Structure Chart

This notation captures one aspect of constructional
information, namely the invocation hierarchy that ex-
ists between subprogram units. While the tree-like
form is similar to that of the Jackson Structure Dia-
gram, the interpretation is very different, in that the
elements (boxes) in a Structure Chart represent physi-
cal entities (subprograms) and the hierarchy shown is
one of invocation (transfer of control) rather than of
abstraction. Figure 5 shows a very simple example of

214

this notation. (There are different forms used to show
information about parameter passing; this is just one of
them.)

The structural viewpoint is concerned with the
physical properties of a design, and hence it is one that
may need to describe many attributes of design ele-
ments. For this reason, no one single notation can ef-
fectively project all of the relevant relationships (such
as encapsulation, scope of shared information, invoca-
tion), and so an effective description of the structural
viewpoint is apt to involve the use of more than a sin-
gle representation.

The Entity-Relationship Diagram

The Entity-Relationship Diagram (ERD) is com-
monly used for modelling the details of the inter-
relationships that-occur between data elements in a
system, although it may also perform other modelling
roles [12]. Figure 6 shows a very simple example of
one form of ERD containing two entities (boxes), a
relationship (diamond) and the relevant attributes of
the entities. Additional conventions are used to show
whether the nature of a relationship is one-to-one, one-
to-many or many-to-many. (In the example, the rela-
tionship is many-to-one between the entities “aircraft”
and “landing stack,” since one stack may contain many
aircraft.)



make tea

warm the put tea add boiling pour tea
teapot in the pot water to pot into cups
spoon tea *
from caddy
use © use ©
chinese tea indian tea

Figure 4. An example of a Jackson Structure Diagram.

Openfile

Figure 5. A simple Structure Chart.

215

Print




aircraft

landing stack

Figure 6. A simple Entity-Relationship Diagram.

3 Software Design Practices and Design
Methods

Section 1.1 introduced the concept of a software
design method as a means of transferring “knowledge”
to less experienced designers. This section explores
this concept a little further.

3.1 Rationale for software design methods

The use of “methods” for software design has no
parallel in any other stage of software development.
We do not have “testing methods” or even
“programming methods.” When teaching program-
ming, we commonly provide the student with a set of
“programming metaphors,” together . with a set of
application paradigms such as trees and stacks that
make use of these. -

The partial analogy with programming points to
one of the problems that hinders teaching about
design, namely that of scale. Novice programmers can
use the abstractions provided in a programming lan-
guage to construct actual programs, and in the process
receive feedback that can assist with revising their
ideas and understanding during both compilation and
execution of the programs. In contrast, novice design-
ers have no equivalent sources of feedback to indicate
where their ideas might be inconsistent, and have little
or no chance of comparing an eventual implementation
against the abstract design ideas. So “method knowl-
edge” may be our only practical means for transferring
experience, however inadequate this might be. (As an
example, it is rather as though programmers were
taught to solve all needs for iteration by using only the
FOR construct.)

Other roles for software design methods include:

e Establishing common goals and styles for a
team of developers.

e Generating “consistent” documentation that
may assist with future maintenance by help-

216

ing the maintainers to recapture the original
design model.

e Helping to make some of the features of a
problem more explicit, along with their influ-
ence upon the design.

Constraints that limit their usefulness are:

e The process part of a method provides rela-
tively little detailed guidance as to how a
problem should be solved. It may indicate
how the design model is to be developed, but
not what should go into this for a given
problem.

e The need to use a procedural form (do this,
then do that, then...) leads to practices that
conflict with the behaviour observed in expe-
rienced designers. Decisions have to be made
on a method-based schedule, rather than ac-
cording to the needs of the problem.

So, while at the present time software design
methods probably provide the most practical means of
transferring design knowledge, we cannot claim that
they are particularly successful.

3.2 Design strategies

Design methods embody strategies (indeed, this is
where they particularly diverge from the practices of
experienced designers, since the latter are observed to
adapt a strategy opportunistically in order to meet the
needs of a problem). Four widely-used strategies are:

Top-down: As the name implies, this is based
upon the idea of separating a large problem
into smaller ones, in the hope that the latter
will be easier to solve. While relatively.easy
to use, it has the disadvantage that important
structural decisions may need to be made at
an early stage, so that any subsequent need



for modification may require extensive
reworking of the whole design.

Compositional: As implied, this involves identi-
fying a set of “entities” that can be modelled
and which can then be assembled to create a
model for the complete solution. While the
carlier stages may be simple, the resultant
model can become very complex.

Organisational: A strategy of this form is used
where the needs of the development organi-
sation and its management structures impose
constraints upon the design process. This may
require that project (and design) team mem-
bers may be transferred at arbitrary times, so
that the method should help with the transfer
between old and new team members. A good
example of this form is SSADM [13].

Template: Templates can be used in those rare
cases where some general paradigm describes
a reasonably large domain of problems. The
classical example of this form is that of com-
piler design, and indeed, this is probably the
only really good example.

Whatever the strategy adopted, the process part of
a method is usually described as a sequence of steps.
Each step alters the design method, either by elabo-
rating the details of the model, or by transforming
them, adding new attributes to create new viewpoint
descriptions. Steps may involve many activities, and
provide a set of milestones that can be used to monitor
the progress of a design.

The choice of design strategy and associated
method has significant implications for the resulting
solution structure, or architecture. Shaw’s comparative
review of design forms for a car cruise-control system
[14] demonstrates the wide range of solution archi-

tectures that have been produced from the use of 11,

different design methods. But of course, this still
leaves open the question of how to know in advance
which of these is likely to be the most appropriate so-
lution, and hence the most appropriate method! Any
choice of a design method may also be further influ-
enced by prior experience, as well as by social, politi-

none of which can be easily quantified (or accommo-
dated in this review).

4. Features of Some Software Design
Methods

A review paper such as this cannot examine the
workings of software design methods in any detail. So
in this section, we briefly review the significant fea-
tures of a number of well-established design methods,
chosen to provide a reasonable range of examples of
strategy and form. For fuller descriptions and refer-
ences, see [9].

Our review starts with two first-generation design
methods that provide examples of both compositional
and decompositional strategies. After that, we look at
two examples of second-generation methods, which
typically exhibit much more complex design models.

4.1 Jackson Structured Programming (JSP)

JSP was one of the earliest design methods and
provides a useful paradigm for the method-based
approach to transferring and developing design knowl-
edge. It is deliberately aimed at a very tightly con-
strained domain of application, and hence can be more
prescriptive in its process part than is normal. In addi-
tion, it is an algorithm design method, whereas the
other methods are aimed at larger systems and produce
structural plans. On occasion, JSP may therefore be
useful for localised design tasks within a larger system
design task. JSP uses a compositional strategy.

The representation part of JSP is provided by the
ubiquitous Jackson Structure Diagram. This is used
both for modelling data structures and also for func-
tional modelling.

The process part of ISP is summarised in Table 2.
For each step we describe its purpose and also whether
it elaborates or transforms the design model.

The heuristics of JSP are highly developed. Read-
ahead, back-tracking, and program inversion have
been widely documented and discussed. Between
them, they provide a set of “adaptations” to the basic
process, and they can be used to resolve some of the

" more commonly-encountered difficulties in applying

cal, historical, business and other nontechnical factors, -

Table 2. Summary of the JSP process part.

_ ISP to practical problems.

Step 1 Draw Structure Diagrams for inputs and outputs elaboration
Step 2 Merge these to create the program Structure Diagram transformation
Step 3 List the operations and allocate to program elements elaboration
Step4 | Convert program to text elaboration
Step 5 Add conditions elaboration

217



4.2 Structured Systems Analysis and Structured
Design

Like JSP, this is a relatively old method, and can
be considered as an extension of the functional top-
down approach to design. It consists of an “analysis”
component and a “design” component. (For the pur-
poses of this paper, the activities of analysis are con-
sidered to be integral with those of design.)

During the analysis phase (Steps 1 and 2), the
designer constructs a functional model of the system
(using “physical” Data-Flow Diagrams) and then uses
this to develop a functional model of the solution
(using “logical” DFDs). This is usually supplemented
by some degree of data modelling, and some real-time
variants also encourage the development of behav-
joural descriptions using State Transition Diagrams
(STDs).

In the design phase (Steps 3 to 5), thxs model is
gradually transformed into a structural model, based
on a hierarchy of subprograms, and described by using
Structure Charts. There is relatively little support for
using ideas such as information hiding, or for
employing any packaging concepts other than the sub-
program.

The representation part therefore uses both DFDs
and Structure Charts for the primary notations, and
sometimes involves the use of ERDs and STDs.

The process part is summarised in Table 3, using
the same format as previously.

The heuristics are far less well-defined than those
of JSP. One of them is intended to help with deter-
mining which “bubble” in the DFD acts as the “central
transform,” while others are used to help restructure
and reorganise the solution after the major Transform

Table 3. Summary of the process part of SSA and SD.

Analysis Step (Step 4) has generated the structural
viewpoint for the design model.

As a method, this one has strong intuitive attrac-
tions, but suffers from the disadvantage of having a
large and relatively disjoint transformation step.

4.3 Jackson System Development (JSD)

JSD encourages the designer to create a design
model around the notion of modelling the behaviour of
active “entities.” In the initial stages, these entities are
related to the problem, but gradually the emphasis
changes to use entities that are elements of the
solution.

A characteristic of second-generation design meth-
ods is that they involve constructing much more com-
plex design models from the start, usually involving
the use of more than one design viewpoint. As a result,
they generally use a sequence of elaboration steps to
modify the design model, rather than providing any
major transformation steps.

The representation part of JSD makes use of
Entity-Structure Diagrams (ESDs) to model the time-
ordered behaviour of long-lived problem entities.
(These diagrams use a different interpretation of the
basic Jackson Structure Diagram.) The function and
structure of the resulting network of interacting
“processes” is then modelled using System Specifica-
tion Diagrams (SSDs).

The process part can be described in terms of three
stages [9,15], which can be further subdivided to form
six major design activities. Table 4 provides a very
basic summary of these activities, using the same for-
mat as before.

Step 1 | Develop a top-level description elaboration
Step2 | Develop a model of the problem (SSA) elaboration
Step3 | Subdivide into DFDs describing transactions elaboration
Step4 | Transform into Structure Charts transformation
Step S Refine and recombine into system description elaboration
Table 4. Summary of the JSD process part.
1. Entity Analysis Identify and model problem entities elaboration
2. Initial Model Phase Complete the problem model network elaboration
3. Interactive Function Step Add new solution entities elaboration
4. Information Function Step | Add new solution entities elaboration
5. System Timing Step Resolve synchronisation issues elaboration
6. Implementation Physical design mappings elaboration

218



The heuristics of JSD owe quite a lot to JSP, with
both back-tracking and program inversion being rec-
ognisable adaptions of these ideas to a larger scale. An
additional technique is that of state vector separation
which can be used to increase implementational effi-
ciency via a form of “reentrancy.”

4.4 Object-Oriented Design

The topics of “what is an object?” and “how do we
design with objects?” are both well beyond the scope
of this paper. Some ideas about the nature of objects
can be found in [16] and in [17].

It can be argued that object-oriented analysis and
design techniques are still evolving (perhaps not as
rapidly as was once hoped). The Fusion method [12]
provides a useful example of one of the more devel-
oped uses of these ideas, and one that has brought to-
gether a number of techniques (hence its name).

The representation part of such methods is often a
weakness, being used to document decisions at a later
stage, rather than to help model the solution. Fusion
seeks to make extensive use of diagrammatical forms,
and especially of variations upon the Entity-
Relationship Diagram.

* The process part is described in Table 5 and
includes both analysis and design activities. There are
no identifiable heuristics available for such a recent
method. (A fuller methodological analysis of Fusion as
well as of the other methods described in this section
is provided in reference [18].) A problem with object-
oriented methods is that they do encourage the
designer to make decisions about “structure” at a much
earlier stage than “process”-oriented methods (including
JSD), and hence bind the design to implementation-
oriented physical issues before the details of the
abstract design model have been fully worked through.

5. Conclusion

This paper has sought to review both our current
understanding of how software systems are designed

Table 5. The Fusion design process.

(and why that process is a complex one) and also how
current software design methods attempt to provide
frameworks to assist with this. As can be seen, even
the second-generation design methods still provide
only limited help with many aspects of designing a
system.

We have not discussed the use of support tools.
Many design support tools still provide little more
than diagram editing facilities and support for version
control. In particular, they tend to bind the user to a
particular set of notations, and hence to a specific
design process. Inevitably, this is an area of research
that lags behind research into design practices.

Overall, while our understanding of how software
is designed is slowly improving [19], it seems likely
that this will provide an active area of research for
many years to come.

References

{1] H.J. Rittel and M.M. Webber, “Planning Problems are
Wicked Problems,” N. Cross, ed., Developments in De-
sign Methodology, Wiley, 1984, pp. 135-144.

[2] E.P. Brooks Jr., “No Silver Bullet: Essence and Acci-
dents of Software Engineering,” Computer, Apr. 1987,
pp. 10-19.

{31 B. Adelson and E. Soloway, “The Role of Domain Expe-
rience in Software Design,” IEEE Trans. Software
Eng., Vol. SE-11, No. 11, Nov. 1985, pp. 1351-1360.

{4] R. Guindon and B. Curtis, “Control of Cognitive Proc-
esses during Software Design: What Tools are
needed?” in Proc. CHI’'88, ACM Press, New York,
N.Y., 1988, pp. 263-268.

[5] W. Visser and J.-M. Hoc, “Expert Software Design
Strategies,” in Psychology of Programming, Academic
Press, New York, N.Y., 1990.

[6] B. Hayes-Roth and F. Hayes-Roth, “A Cognitive Model
of Planning,” Cognitive Science, Vol. 3, 1979,
pp- 275-310.

{71 N.E. Fenton, Software Metrics: A Rigorous Approach,
Chapman & Hall, 1991.

Phase Step Action
Analysis 1. Develop the Object Model
Analysis 2. Determine the System Interface
Analysis 3. Development of the Interface Model
Analysis 4. Check the Analysis Models
Design 5. Develop Object Interaction Graphs
Design 6. Develop Visibility Graphs
Design 7. Develop Class Descriptions
Design 8. Develop Inheritance Graphs

219



{8] D.L. Parnas and D.M. Weiss, “Active Design Reviews:
Principles and Practices,” J. Systems & Software, Vol.
7, 1987, pp. 259-265.

(9] D. Budgen, Software Design, Addison-Wesley, Woking-
ham, Berkshire, 1993.

{10] G. Friel and D. Budgen, *“Design Transformation and
Abstract Design Prototyping,” Information and Software
Technology, Vol. 33, No. 9, Nov. 1991, pp. 707-719.

[11] D. Harel, “On Visual Formalisms,” Comm. ACM, Vol.
31, No. 5, May 1988, pp. 514-530.

{12] D. Coleman, et al., Object-Oriented Development: The
Fusion Method, Prentice-Hall, Englewood Cliffs, N.J.,
1994.

[13] E. Downs, P. Clare, and L. Coe, SSADM: Structured
Systems Analysis and Design Method: Application and
Context, Prentice-Hall, Englewood Cliffs, N.J., 2nd ed.,
1992.

220

(14] M. Shaw, “Comparing Architectural Design Styles,”
IEEE Software, VolL. 12, No. 6, Nov. 1995,
pp. 27-41.

(15] J. Cameron, JSP & JSD: The Jackson Approach to
Software Development, 2ud ed., IEEE Computer Soci-
ety Press, Los Alamitos, Calif., 1989.

[16] G. Booch, Object-Oriented Analysis and Design, Ben-
jamin/Cummings, Redwood City, Calif., 1994.

{171 A. Snyder, “The Essence of Objects: Concepts and
Terms,” IEEE Software, Jan. 1993, pp. 31—42.

(18] D. Budgen, “‘Design Models’ from Software Design
methods,” Design Studies, Vol. 16, No. 3, July 1995,
pp- 293-325.

{19] B.I. Blum, “A Taxonomy of Software Development
Methods,” Comm. ACM, Vol. 37, No. 11, Nov. 1994,
pp- 82-94.



